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A B S T R A C T

Research in driver mental fatigue is motivated by the fact that errors made by drivers often have life-threatening
consequences. This paper proposes a new modular design approach for the early detection of driver fatigue
system taking into account optimisation of system performance using particle swarm optimisation (PSO). The
proposed system is designed and implemented using an existing dataset that was simultaneously collected from
participants and vehicles in a naturalistic environment. Four types of data are considered as fatigue-related
metrics including: vehicle acceleration, vehicle rotation pattern, driver's head position and driver's head rota-
tion. The driver's blink rate data is used in this work as a proxy for ground truth for the classification algorithm.
The collected data elements are initially fed to input modules represented by ternary neural network classifiers
that estimates alertness. A Bayesian algorithm with PSO is then used to combine and optimise detection per-
formance based on the number of existing input modules as well as their output states. Performance of the
developed fatigue-detection system is assessed experimentally with a small data samples of driver trips. The
obtained results are found in agreement with the state-of-the-art in terms of accuracy (90.4%), sensitivity
(92.6%) and specificity (90.7%). These results are achieved with significant design flexibility and robustness
against partial loss of input data source(s). However, due to small sample size of dataset (N=3), a larger dataset
need to be tested with the same system framework to generalise the findings of this work.

1. Introduction

Reliable and robust driver fatigue detection systems are becoming
essential requirements for road safety due to the dangerous and often
fatal consequences of road accidents caused by fatigued drivers. The
onset of mental fatigue is usually accompanied by slow reaction time,
impaired judgement and may ultimately lead to falling asleep behind
the steering wheel. Road accidents caused by fatigued drivers can have
fatal and devastation consequences (Centre for Road Safety, 2016).
Numerous driver fatigue symptoms have been reported in the literature
along with relevant systems used to detect them (Abbood et al., 2014;
Stork et al., 2015), with varying degree of success.

Different swarm optimisation methods have been proposed in the
transportation sector to find the optimal traffic network situation
(Sharma and Kumari, 2015; Sandberg and Wahde, 2008). However,
only few studies have identified the use of optimisation techniques to
enhance the performance level of the modular organisation (Durán
et al., 2012). Despite the important contributions reported in these
studies and others, identifying a practical, robust and flexible fatigue-
detection approach remains an elusive goal.

In this work, a scalable modular design approach is considered to

build a system using a Bayesian combiner and a particle swarm opti-
miser (PSO). This enables the utilisation of input modules depending on
availability. The Bayesian combiner, which improves the detection
accuracy with the aid of PSO, deals with the number of existing input
modules as well as their states (i.e. alert, mild fatigue and fatigued).
Unlike existing systems, this makes the proposed system flexible in
terms of the available input data and more robust against losing one or
more data sources.

The paper is organised as follows. A theoretical background on
modularity, Bayesian algorithm and PSO is presented in Section 3.
Section 4 details the study dataset. The overview for the proposed
system architectures and methodology are described in Section 5. The
obtained results are presented and discussed in Section 6. Finally, the
work is concluded in Section 7.

2. Related work

Mental fatigue evaluation has been reported in a numerous amount
of research articles (Meiring and Myburgh, 2015; Al-Libawy et al.,
2016a, 2016b, 2017). The available driver fatigue-detection literature
has agreed to categorise fatigue-related symptoms into three categories
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based on either generation or detection perspectives. The first category
includes the biological symptoms which capture the development of
driver fatigue using metrics such as heart rate, skin temperature and
skin conductivity (Al-Libawy et al., 2015). Different detection techni-
ques and devices are used to detect the biological signs of fatigue such
as wearable devices or sensors built into the vehicle (Zhang, et al.,
2017). The second is the behavioural category which is mainly noticed
from driving style (Engelbrecht et al., 2015). Metrics such as steering
wheel angle, acceleration pattern, lateral movements and braking pat-
tern are the main measures used to quantify fatigue status of the driver
(Meiring and Myburgh, 2015; Li et al., 2017). The last category is visual
signs of drivers, such as facial features, percentage of eye closure, blink
rate, yawn rate and others (Sigari et al., 2014).

More recent works of fatigue-detection systems have used more
than one fatigue-related metric to improve the detection accuracy
(Stork et al., 2015). The detection system fuses and combine the cal-
culated metrics in three main levels. The first is the raw or filtered data
level which is used when different sensors measure the same metric
(Koenig et al., 2015). The second is the features level and can detect
fatigue status from features even when they are extracted from different
types of sensors (Yin et al., 2016). The last level is the abstract or the
decision level which combines multi-module outputs to calculate an
enhanced and accurate output. Several integrated driver fatigued de-
tection systems have been developed that combine different classifiers
decisions using different fatigue-related metrics (Craye et al., 2016).
Despite the good results obtained from simulated environments, the
robustness of these decision-combining systems was not tested under
condition of partial loss of input data.

While several experiments were carried out to measure and quantify
driver behaviour in real environments, only a small portion of these was
focused on driver fatigue in naturalistic environments (Fu et al., 2016;
Li et al., 2017). The work reported in Fu et al. (2016) adopted three
fatigue-related physiological metrics (EEG, EMG and respiration rate),
but the method for measuring these metrics is not very practical in real
environments. The results in publication Li et al. (2017) are calculated
based on one metric (steering wheel angle) which may not be available
in many vehicles and require third party devices to be installed.

3. Theoretical background

This section presents a theoretical background for three key aspects
of the proposed work: the importance of modularity, Bayesian com-
biner and PSO.

3.1. Importance of modularity

The need for a system that can combine heterogeneous subsystems
(modules) efficiently is behind the idea of “interdependence within and
independence across modules” (Hatch, 2001) which is one of the defini-
tions of modularity. Modular design is preferred over the integral de-
sign due to its benefits including (Avigad, 2016; Pradhan et al., 2011):

(a) Reliability and robustness. The modular structure enhances the ro-
bustness and improves the reliability of certain system if they are
designed properly to maintain their functional mission even if they
lose one or more of their modules.

(b) Flexibility. The need for a flexible system is an essential practical
requirement (Sanchez and Mahoney, 1996). For a fatigue-detection
system where a variety of detection methods are available, it is very
important to design the system to be flexible to accommodate a
variety of configurations for different working environments.

(c) Comprehensibility. In complex systems such as fatigue-detection
systems, modular structure makes them more understandable and
easier to handle on a module level.

(d) Independence. A primary motivation of using a modular structure is
the independence of each individual module from other modules.

This feature is very helpful for modular systems to integrate het-
erogeneous modules together without requiring agreement on in-
ternal details.

(e) Abstraction level. This level is responsible for the interfacing be-
tween modules. The abstraction and independence of the modules
help to make the system more practical and flexible.

3.2. Bayesian combiner

The modular structure system needs a frame to be plugged in to
produce the combined final output. Several combination algorithms
have been proposed to combine heterogeneous sets of modules (e.g.
majority voting, weighted majority voting, or Bayesian combiner)
(Bahler and Navarro, 2000; Kuncheva, 2004). The Bayesian combiner is
ideally suited for problems when the output of the modules is in-
dependent even when the number of modules is dropped to two (Kim
and Ghahramani, 2012).

The Bayesian combiner works at the abstraction level of the output
of L modules, each module Mi predicts class label bi∈H, i=1,…, L. So,
any input set x∈Rn, can be combined, the L module outputs produce a
vector b=[b1, …, bL]T∈HL. Bayes’ theorem Vapnik and Vapnik (1998)
of probability computes the posterior probability of moduleMi based on
the prior probability P(hj) where hj is the actual class label (hj∈H,
j=1, …, C and C is the number of classes); as well as based on the
likelihood P(b|hj) of the evidence b. The independence assumption is
maintained and allows the conditional probability of the module Mi

labels the input x in class bi∈H to be presented as follows:
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Bayes’ rule can be described mathematically as follows:
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3.3. Particle swarm optimisation (PSO)

Particle swarm optimisation is a meta-heuristic algorithm devised
by Kennedy and Eberhart in 1995 Engelbrecht (2006) which is inspired
by the social behaviour of birds. Several versions of PSO were derived
later to cover new applications or to address some limitations and
challenges discovered with the original version (Poli et al., 2007).

PSO can find the optimal solution for an optimisation problem in a
D-dimensional hyperspace. A swarm of N particles is recruited to find
the best position according to the individual perspective (Pbest) and the
overall perspective (Gbest) (Lazinica, 2009). Each particle tries to up-
date its position (solution) to achieve the best fitness value and mini-
mise the cost function. The update stochastic function is based on three
parts: inertia part, self-knowledge part and team-work part. The update
rule is determined as follows:

= + × − + × −+v c R x c R xwv (Pbest ) (Gbest )i
k

i
k

i
k

i
k

i
k

i
k1

1 1 2 2 (3)

= ++ +x x vi
k

i
k

i
k1 1 (4)

where w is the inertia (habitual behaviour) weight, c1 is an acceleration
constant of the self-knowledge (memory) component, c2 is an accel-
eration constant of the team-work component, and R1 and R2 are
random numbers.

PSO is used in this work to improve the performance of the Bayesian
combiner. The cost function of the optimiser is a function of the com-
biner accuracy, while the best solution will be represented in the best
set of weights related to each module (it is not related to the inertia
weight of the optimiser update rule in Eq. (3)).
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