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A B S T R A C T

This study aims to classify the injury severity in motor-vehicle crashes with both high accuracy and sensitivity
rates. The dataset used in this study contains 297,113 vehicle crashes, obtained from the Michigan Traffic Crash
Facts (MTCF) dataset, from 2016–2017. Similar to any other crash dataset, different accident severity classes are
not equally represented in MTCF. To account for the imbalanced classes, several techniques have been used,
including under-sampling and over-sampling. Using five classification learning models (i.e., Logistic regression,
Decision tree, Neural network, Gradient boosting model, and Naïve Bayes classifier), we classify the levels of
injury severity and attempt to improve the classification performance by two training-testing methods including
Bootstrap aggregation (or bagging) and majority voting. Furthermore, due to the imbalance present in the da-
taset, we use the geometric mean (G-mean) to evaluate the classification performance. We show that the clas-
sification performance is the highest when bagging is used with decision trees, with over-sampling treatment for
imbalanced data. The effect of treatments for the imbalanced data is maximized when under-sampling is
combined with bagging. In addition to the original five classes of injury severity in the MTCF dataset, we
consider two additional classification problems, one with two classes and the other with three classes, to (1)
investigate the impact of the number of classes on the performance of classification models, and (2) enable
comparing our results with the literature.

1. Introduction

According to the National Highway Traffic Safety Administration
Research Note, motor-vehicle crashes in 2015 led to 35,092 fatalities in
the United States, an increase of 7.2% from 2014 (National Center for
Statistics and Analysis, 2015). A crash analysis report published in the
U.S. Department of Transportation indicates that the total economic
cost of motor vehicle crashes occurred in 2010 was more than $200
billion, including the costs due to approximately 33,000 fatalities, 3.9
million non-fatal injuries, and 24 million damaged vehicles (Blincoe
et al., 2015). About 31 percent of the total economic costs were in form
of property damage costs, while 10 percent of the total costs were in
medical costs. Based on these statistics, a better understanding of the
relationship between crash risk factors and the injury severity can help
enhance driving safety, curb the economic impact of crashes, and re-
duce the number of fatal crashes.

In classifying crash injury severity, the classification power of a
model cannot be simply captured by its correct classification rate.

Accident severity datasets are typically imbalanced, with the non-fatal
class containing disproportionally more data points compared to the
fatal class. If untreated, such a structure could lead to training models
that look promising on the outside with high accuracy rates (the ac-
curacy is defined as the ability of the model to correctly predict acci-
dent severity classes on a test set; see Eq. (1)), but fail to be informative
in reality. An extreme example of a weak model is a trivial model that
predicts all accidents to be non-fatal, in a 2-class problem with fatal and
non-fatal classes. Such a model would have a very high accuracy rate,
while the value of a crash classification model lies mostly on correct
classifications of higher severity classes (e.g., fatal crashes), typically
referred to as “sensitivity” (i.e., the ability of the model to correctly
classify the severity level as ‘fatal’ (Farchi et al., 2007; Parikh et al.,
2008; see Eq. (2)). On the other hand, a model that classifies all acci-
dents as fatal would produce a high sensitivity, but a low accuracy
score. Hence, there is a clear trade-off between accuracy and sensitivity
scores of crash severity models that can only be resolved through ap-
propriate handling of imbalanced data. This imbalanced data structure,
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therefore, necessitates additional steps in model training and evalua-
tion: (i) using appropriate evaluation metrics, and (ii) balancing the
dataset before training.

Limitations of classification accuracy rate in evaluating model per-
formance could be addressed through using additional statistical mea-
sures, namely, true positive, true negative, false positive, and false
negative (see Table 1 for a detailed description) to create more in-
formative metrics. Using these measurements, accuracy, sensitivity, and
specificity, as defined in Eqs. (1)–(3), respectively, can be easily com-
puted for a 2-class classification problem. These metrics collectively
help depict a more comprehensive picture of the overall model per-
formance (Parikh et al., 2008). Ultimately, geometric mean (or G-mean)
of sensitivity and specificity can be used as a compact evaluation metric
to compare the general performance of different models. The G-mean is
calculated as the square root of the product of sensitivity and specificity
and will have high values when both sensitivity and specificity are high
and the difference between the two metrics is small (Kubat et al., 1997).
Finally, while reporting a variety of metrics that can provide a com-
prehensive picture of model performance is necessary, measures need
to be taken to produce high-performance models in the first place. This
can be obtained by generating a balanced dataset based on the original
imbalanced dataset on which models can be trained.
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Using a different terminology, the G-mean in binary classification
can be the square root of the product of class 1’s accuracy (former
sensitivity measure) and class 2’s accuracy (former specificity measure).
As such, in a C-class classification problem the definition of G-mean can
be expanded to C classes as the following:

= × ×⋯×Class accuracy Class accuracy Class C accuracyG-mean ( 1 2 ) C1/

Traditionally, motor vehicle crash injury severity has been modeled
using statistical methods, with the goal of identifying the significance of
each potential factor in the severity of the outcome of a crash. This type
of analysis is valuable in informing future safety-focused planning ef-
forts. Although the proposed methodology here can be used for the
same purposes through conducting sensitivity analysis, our main goal is
to learn an ensemble of models that can predict the severity of crashes
in a fraction of a second and with a high degree of accuracy. Such a
model is needed by autonomous vehicles, where fast evaluation of the
circumstances and decision making is critical. An autonomous vehicle,
having access to such prediction, can take the necessary cautionary
measures to avoid (or mitigate the impact of) any potential accidents.

Although autonomous vehicles are equipped with a variety of sen-
sors to help them browse through the surrounding environment, they
are highly susceptible to low-quality sensor readings as well as anom-
alous sensor readings, either due to faulty sensors or malicious cyber-
attacks. As such, redundancy in information plays a great role in in-
creasing the reliability of autonomous vehicles under various scenarios,
and in the absence of (reliable) sensor readings. With focus on factors

that are easy to measure (e.g., whether the driver is under the influence
of alcohol using in-vehicle cameras), and can be reliably obtained from
other sources (e.g., the roadway alignment using high definition maps,
the weather conditions), we provide a prior model on the severity of
potential accidents, should they occur. This information can help the
autonomous system make better choices, e.g., take over the control of
the motor vehicle from the human driver in case the driver is perceived
to be under the influence (in semi-autonomous vehicles), or drive at
lower speeds in the presence of adverse weather conditions, such as fog,
which may reduce the precision of sensors.

The contributions of this paper to the literature are three-fold. First,
we use a total of 5 machine learning techniques to model crash injury
severity levels. These models are trained in isolation, and as ensemble
models, providing insights on the degree to which various machine
learning techniques are appropriate for crash injury severity classifi-
cation. Second, we use under-sampling and over-sampling to treat the
inherent imbalance of the crash dataset before learning and discuss the
effects of these treatments. Finally, we provide various performance
statistics and show that several of our models out-perform models in the
literature by achieving both high accuracy and sensitivity rates at the
same time.

2. Literature review

To date, many previous studies have modeled the traffic crash injury
severity with potential risk factors, using statistical and machine
learning methods (e.g., Abdelwahab and Abdel-Aty, 2001; Chang and
Wang, 2006; Eluru et al., 2008; Zhu and Srinivasan, 2011; Castro et al.,
2013; Xu et al., 2013; Yu and Abdel-Aty, 2013; Lee and Li, 2015; Chen
et al., 2015, 2016). For example, Abdelwahab and Abdel-Aty (2001)
used two neural network models (namely, multilayer perceptron and
fuzzy adaptive resonance theory) to classify driver injury severity with
driver, vehicle, roadway, and environmental factors. Chang and Wang
(2006) estimated the effect of several risk factors (e.g., driver/vehicle,
highway/environmental variables) on injury severity (i.e., fatal, injury,
and no-injury) using classification and regression tree (CART). They
analyzed crash data from police records collected in Taiwan and found
that vehicle type is the most important factor associated with injury
severity. Chen et al. (2015) used a hybrid method that combines mul-
tinomial logit and Bayesian network to classify the driver injury se-
verity, with crash data from New Mexico. They identified several risk
factors for motor vehicle crash fatalities, including environmental fac-
tors such as windy weather and inferior lighting conditions.

Among the studies on classifying motor vehicle crash injury severity
in the literature (e.g., Abdelwahab and Abdel-Aty, 2001; Chang and
Wang, 2006; Eluru et al., 2008; Castro et al., 2013; Chang and Chien,
2013; Xu et al., 2013; Yu and Abdel-Aty, 2013; Lee and Li, 2015; Chen
et al., 2016), some report only the classification accuracy (e.g.,
Abdelwahab and Abdel-Aty, 2001). Other studies report both the clas-
sification accuracy and the classification accuracy of the class of in-
terest by reporting statistics such as sensitivity or specificity, but only
the classification accuracy has been the focus of discussion (e.g., Chang
and Chien, 2013; Chang and Wang, 2006). Table 2 summarizes studies
in the literature that report more statistics than just the general clas-
sification accuracy. Moreover, none of these studies have taken mea-
sures to address data imbalance, although two studies (i.e., Chang and
Wang, 2006; Chen et al., 2015) have pointed out this issue as a lim-
itation of their work.

3. Data description

Crash data used for fatality analysis were obtained from the
Michigan Traffic Crash Facts (MTCF) database that contains official
Michigan year-end crash data (Office of Highway Safety Planning,
2017). In this study, two years of crash data (restricted to vehicle cra-
shes only; neither pedestrian nor bicycle) were collected (from 2016 to

Table 1
Confusion Matrix and the Four Measurements for 2-Class Classification.

Predicted Positive
(fatal)

Predicted Negative
(non-fatal)

Actual Positive
(fatal)

True Positive (TP) False Negative (FN)

Actual Negative
(non-fatal)

False Positive (FP) True Negative (TN)
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