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A B S T R A C T

Hazardous gas emissions could cause serious consequences for ecology, environment, human life and even so-
ciety. Thus gas emission source term identification is crucial for emergency response and safety management.
Based on experimental data, swarm intelligent optimization (SIO) algorithms including particle swarm opti-
mization (PSO), ant colony optimization algorithm (ACO) and firefly algorithm (FA), are compared to identify
the gas emission source parameters including source strength and location parameters. The results show that all
three SIO methods used in this work have similar performances in terms of source parameter estimation, and all
of them depend slightly on initial range set for individuals in the population. However, PSO method is superior
in computational efficiency compared with ACO and FA methods. The convergence rate of FA is faster than that
of ACO. PSO method can obtain satisfied estimation results under different boundary constraints, while the
estimation results of FA and ACO will become unrealistic under too wide boundary constraints. The impact of
atmospheric conditions on estimated results is also discussed. The results under extreme atmospheric conditions
are worse than that in other conditions. Finally, SIO method coupled with a new model, correlated matching of
concentration distribution (CMCD) model, is applied to the source location estimation. Test results prove that
SIO-CMCD model can obtain a satisfied estimation as well as greatly enhanced computational efficiency when
only location parameters are required to be determined. Hence, SIO is a useful tool to estimate emission source
term for the storage and transportation process of hazardous gas or volatile materials.

1. Introduction

More and more hazardous materials are used in different industries
and thus potential risks caused by these dangerous sources are very
high. Emission of flammable hazardous materials, such as oil and gas
products, from storage or during the transportation process, could lead
to serious consequences. Hence, it is very important to monitor and
trace the emission source for risk assessment and control (Safitri et al.,
2011; Li et al., 2016; Ma et al., 2018a; 2018b). Source parameters
identification is a basic way to trace the source term. The estimated
results of source parameters such as location and strength can be uti-
lized to analyze, manage and control the risk and then reduce the loss
caused by an emission event.

Currently, compared with the direct method of source determina-
tion using a portable instrument, more attention has been paid to the
source identification method combing monitor data and inverse algo-
rithms. For a forward process, the gas concentrations distribution is
predicted with forward dispersion model while the source term is es-
timated with inverse problem model for inverse process. Various
methods have been employed to identify source terms, such as sto-
chastic probability method based on Bayes inference (Hirst et al., 2013;
Yee et al., 2014; Ma et al., 2014; Xue et al., 2018), inverse Langrangian
stochastic model (Flesch et al., 2004) and optimization method (Haupt,
2005; Ma et al., 2013; Wang et al., 2018). Among these methods, op-
timization algorithm is widely used due to its high efficiency and ac-
curacy as well as the capability of multiple parameters estimation.
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Many different optimization algorithms including classic optimization
methods (e.g. simplex, pattern search, convex optimization) and heur-
istic algorithms (e.g. genetic algorithm (GA) and simulated annealing
(SA)), have been applied to identify source parameters and reconstruct
source terms under different environments. For classic optimization
methods, it is fast to estimate the source parameters, but these methods
always depend on the initial values and are often restricted near the
local optimization point (Ma et al., 2013). Therefore, global optimiza-
tion method is adopted to obtain the source parameters for the problem
of gas emission. Heuristic optimization methods are able to find global
optimization values, and thus have been tested to estimate source term.
Among them, swarm intelligence algorithm (SIA) is proposed based on
simulating the intelligent behavior of the biotic population to solve the
complex optimization problems (Chu et al., 2011; Pan et al., 2011; Ni
et al., 2013). However, emission source estimation with SIA has not
been discussed comprehensively.

Particle swarm optimization (PSO), ant colony optimization (ACO)
and firefly algorithm (FA) are three typical group optimization algo-
rithms. PSO algorithm is inspired from the foraging behavior of bird
groups. It is often used to deal with some complex and nonlinear pro-
blem (Pan et al., 2011; Ma et al., 2017, 2018c). ACO is developed based
on the food-finding behavior of groups of ants, which takes a dis-
tributed parallel operation mechanic (Ni et al., 2013; Qin, 2013). ACO
is robust and adaptable, which makes it easy to combine with other
algorithms. FA evolves from the information communication me-
chanism by fluorescence among fireflies (Fister et al., 2013; Bhushan
and Pillai, 2013; Yelghi and Köse, 2018). FA can find an optimization
solution easily for multi-modal function. For gas emission source esti-
mation with SIA methods, only PSO was reported to identify gas
emission sources. Moreover, the performance and influence factors of
different SIA methods have not been quantitatively discussed for
emission source identification. Additionally, how to improve the com-
putational efficiency of source estimation method with SIA is also a
challenge in this field.

In this work, different kinds of SIA methods will be utilized to
identify the source parameters, and then the performance and property
of different methods will be compared quantitatively with each other.
Then, a new estimation function based on a correlated matching of
concentration distribution (CMCD) method will be proposed to improve
the location estimation performance with SIA methods.

2. Mathematic model

2.1. Object function

The basic object function adopted here is shown in Eq. (1) (Haupt,
2005; Long et al., 2010).
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where Cmea,i (g m−3) is the concentration measured by the sensor at the
position i and Cpre,i (g m−3) is the concentration predicted by the for-
ward dispersion model; Q is the emission source strength (g s−1); x, y
and z are downwind, crosswind and vertical distances of the sensor to
the source location respectively (m). N is the number of the measure-
ment. The source of Eq. (1) is assumed to be on the position of x=0
and y=0. f0 is the object function, which means the error between
measurement and prediction.

2.2. Forward dispersion model

Forward dispersion model is a dominant factor for source estimation
problems. Many different dispersion models, including computational
fluid dynamic (CFD) (Vázquez-Román et al., 2016; Efthimiou et al.,
2017), Lagrangian stochastic (LS) (Flesch et al., 2004), Gaussian

dispersion model (Ruj and Chatterjee, 2012; Ma et al., 2014; Li et al.,
2015) and machine learning network model (Ma and Zhang, 2016),
have been applied to solve inverse problems of source term identifi-
cation. Among these forward models, Gaussian model is a classic one
based on experiments and solution of dispersion equations, which is
widely used for point source estimation in atmosphere for its high
computational efficiency and satisfied accuracy. Here, Gaussian dis-
persion model is also selected as the forward dispersion model for a
continuous point emission, which is expressed in Eq. (2) (Briggs, 1973).
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Here, C (x, y, z) is the concentration at the position of (x,y,z) in
atmosphere. U is the wind speed (m s−1) and h is the effective height of
the emission source. σy (m) and σz (m) are the distance deviation
coefficients in crosswind and vertical direction, which are related to the
downwind distance and atmospheric condition. In this research, σy (m)
and σz (m) are determined by the formulas recommended by Briggs
(1973).

3. Principle of algorithms

3.1. Particle swarm optimization

Particle swarm optimization (PSO) algorithm is a method based on
the foraging process of bird swarms, which finds an optimization route
with the collective coordination. During the process of PSO, every op-
timization problem is viewed as a particle with an adaptive value de-
termined by the optimization function in the search space to judge the
status of the particle at this position. Each particle is able to find an
optimized position and velocity with the memory at a certain position
to decide the direction and distance for the next step. The calculation
process can be depicted as following:

First, the particles are initialized with the random position and
velocity in a feasible region and the adaptive value of each particle is
calculated with adaptive function. Then, the particle's adaptive value is
compared with local optimization solution (pbest) and global optimi-
zation solution (gbest), and the best values are updated with the best
solution. Finally, every particle's position and velocity are updated with
the above process until the termination condition is satisfied.

The adaptive function is set as F(x) and the number of the total
particles is m. The dimension of search space is D. The position of ith
particle can be expressed as xi=(xi1, xi2, …, xiD), and its velocity vi=
(vi1, vi2,…, viD). The first generation xi is produced randomly and then it
is introduced to the adaptive function F(x). The optimized position of
particle i passed is pi=(pi1,pi2, …, piD) and the optimized position of all
particles passed is, which is the global optimization value in the current
step. The position and velocity for every particle is updated with Eqs.
(3) and (4):
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where, i=1,2, …,m; d=1,2, …,D.c1 and c2 are acceleration factors;r1
and r2 are two random numbers (Kennedy and Eberhart, 1995).

The computation process of PSO algorithm is illustrated in Fig. 1.

3.2. Ant colony optimization

The food-finding process of an ant colony is depicted as following:
each ant begins to find food with random position and velocity, and the
pheromone is released on the road passed before. The pheromone will
accumulate more on the shorter path during the same time period, and
then more ants will choose this path (Dorigo et al., 1996; Homsup,
2016). Some ants may find another new way with shorter distance than
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