Accepted Manuscript

Enhanced CO_2 permeability in Matrimid[®] 5218 mixed matrix membranes for separating binary CO_2/CH_4 mixtures

Roberto Castro-Muñoz, Vlastimil Fíla, Violeta Martin-Gil, Clément Muller

PII:	S1383-5866(18)32492-4
DOI:	https://doi.org/10.1016/j.seppur.2018.08.046
Reference:	SEPPUR 14867
To appear in:	Separation and Purification Technology
Received Date:	19 July 2018
Revised Date:	24 August 2018
Accepted Date:	24 August 2018

Please cite this article as: R. Castro-Muñoz, V. Fíla, V. Martin-Gil, C. Muller, Enhanced CO₂ permeability in Matrimid[®] 5218 mixed matrix membranes for separating binary CO₂/CH₄ mixtures, *Separation and Purification Technology* (2018), doi: https://doi.org/10.1016/j.seppur.2018.08.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Enhanced CO₂ permeability in Matrimid[®] 5218 mixed matrix membranes for

separating binary CO₂/CH₄ mixtures

Roberto Castro-Muñoz*, Vlastimil Fíla, Violeta Martin-Gil, Clément Muller

*CORRESPONDING AUTHOR

University of Chemistry and Technology Prague

Technická 5, 166 28 Prague 6, Czech Republic.

E-mail: castromr@vscht.cz; food.biotechnology88@gmail.com

Phone: +420 220 444 018

Abstract

Membrane gas separation is an emerging technology used for the separation of CO₂. Matrimid[®] 5218, one of the current polymers used in membrane gas separation, has good selectivity, but poor CO₂ permeability. We wondered if its CO₂ permeability could be enhanced by the addition of a CO₂-philic additive (PEG 200) and ZIF-8 nanoparticles. ZIF-8 particles were synthesized with a nanoparticle size of 33.83 ± 6.2 nm. These particles were characterized by SEM and XRD. Dense filmcasting method was used to prepare novel ternary mixed matrix membranes with low PEG concentrations (4 wt.%) at different filler loadings (10-40 wt.%). In CO₂/CH₄ binary Download English Version:

https://daneshyari.com/en/article/11003288

Download Persian Version:

https://daneshyari.com/article/11003288

Daneshyari.com