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A B S T R A C T

In this article, we present application of the Cascaded Thermal Lattice Boltzmann Method (CTLBM) in simula-
tions of natural convection in differentially heated square cavity with adiabatic top and bottom walls. This
classical benchmark problem is solved for wide range of Rayleigh numbers (106 – 1010) and compared with data
from the literature. For high Rayleigh numbers we present comparison of Nusselt number and wall shear stress
distributions along hot wall with experimental and direct numerical simulation (DNS) data. Results for Rayleigh
numbers up to 106 are also compared with previous results obtained by MRT-LBM simulations of Wang et al. The
results are in good agreement with the existing ones obtained numerically and experimentally.

1. Introduction

Lattice Boltzmann methods have established themselves as the vi-
able alternative among numerical methods used in CFD. LBM solves the
discretized Boltzmann Transport Equation (BTE) to obtain set of dis-
tribution functions (DFs), from which macroscopic quantities (density,
pressure, velocity, temperature) are then obtained. The physics solved
by the LBM is controlled by the form of the collision operator and
chosen equilibria for the DFs. Several types of realization of collision
operators have emerged [10,22,24,53]. The simplest collision operator
is the Single Relaxation Time (SRT) sometimes called BGK in the LBM
community, after the authors Bhatnagar, Gross and Krook [44]. A large
number of heat transfer and fluid flow problems solved by SRT LBM are
reported in the literature [5,7,11]. In the SRT approach, all non-
conserved moments relax to their equilibrium with the same relaxation
time (due to the construction of the collision operator). SRT is based on
the BGK approach [22], which could produce numerical instabilities,
when the lattice resolution is insufficient [40] and also the truncation
error control is limited [56,57]. In order to increase the stability and
accuracy of the LBM schemes, Multiple Relaxation Times (MRT)
methods were proposed [10]. In MRT schemes collisions are performed
in moment space and different moments could be relaxed with different
relaxation times. MRT methods performed reasonably well and showed
greater stability and accuracy compared to SRT LBM. Unfortunately the

MRT methods are unstable for high Re flows and have other problems
mentioned in Ref. [25]. The CLBM are methods where central moments
are relaxed in a “cascaded manner“ [23,30]. CLBM was successfully
used for high Re fluid flow and general heat transfer problems
[2,18,19,21,24,37,46].

Some authors use MRT methods for the fluid flow and e.g. finite
differences to solve energy equation independently [6,45]. This ap-
proach is known as Hybrid LBM. Other approach known as Double
Distribution Function (DDF) scheme was proposed by Ref. [42], here
two sets of DFs are used, one for the Navier-Stokes equations and an-
other for the energy equation. A large number of research articles ap-
peared, which describe DDF LBM approach with SRT and MRT LBM
(see e.g. Refs. [40,52] and references therein). Recently, D Q3 27 DDF
cascaded LBM was used for steady velocity field and solute transport in
porous medium [20]. Another article describe CLBM scheme for the
fluid flow and SRT LBM for the energy equation [21]. The double
cascaded DDF LBM scheme for thermal problems was recently pre-
sented by the authors in Ref. [19], where CLBM-CTLBM approach was
derived and applied to solve forced convection, meanwhile Fei et al.
published somehow similar DDF CLBM approach applied to heat
transfer [46].

In the present article we solve natural convection in a differentially
heated cavity by the cascaded DDF LBM. We compare results obtained
from our CTLBM code with data from literature. Flow and heat transfer
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in the square cavity for wide range of Rayleigh numbers have been
studied by various groups and substantial research has been carried out.
Various authors used finite differences, finite volumes, finite elements
and pseudo-spectral methods [8,9,15,28,32–34], and also LBM
[3,13,14,16,17,36,43]. Some of the researchers have adopted Hybrid
LBM and DDF LBM [14]. The SRT [3,16] and MRT LBM were used for
laminar flow regime [13,17,36,43]. Dixit et al. [16] used DDF LBM for
solving internal energy equation along with counter-slip boundary
conditions together with mesh refinement and simulated high Rayleigh
number flows (up to =Ra 1010) with SRT. Recently, Jami et al. [27]
published a paper where two MRT DDF LBM schemes have been used to
solve natural convection up to =Ra 108. Allen and Reis derived mo-
ment based boundary conditions and incorporated them in the MRT
LBM in order to solve natural convection in a square cavity [36]. Ren
et al. [35] presented the CUDA implementation of DDF LBM scheme
with a SRT collision operator to solve natural convection in a square
cavity with solid obstacles. Wang et al. [17] used MRT LBM to quali-
tatively examine natural convection in square cavity up to Ra = 106 and
also Rayleigh-Bénard convection. High Ra number flows in cavities
with aspect ratio close or equal to 1 were studied mainly by LES and
DNS e.g. Refs. [49–51].

2. Double distribution cascaded lattice Boltzmann method for
natural convection

DDF LBM approach solves two Lattice Boltzmann Equations, one
describes evolution of velocity distribution functions and other de-
scribes evolution of temperature or internal energy distribution func-
tions. They are solved simultaneously on two separate lattices. In this
article, we consider approach where the temperature is considered as a
passive scalar because viscous dissipation of heat and compression
work are negligible. We use D Q2 9 lattice model for fluid flow and D Q2 5

lattice model for temperature field. The characteristic velocities of the
lattice models are depicted in Fig. 1 and defined by following sets:

= c cc ( , )i i x i y, , for D Q2 9 lattice ( = …i 1, ,9) are

− − − − − −{(0,0), ( 1,1), ( 1,0), ( 1, 1), (0, 1), (1, 1), (1,0), (1,1), (0,1)},

and for D Q2 5 lattice ( = …i 1, ,5) are

− −{(0,0), ( 1,0), (0, 1), (1,0), (0,1)}.

The weight factors, wi for D Q2 9 and D Q2 5 are
= = =w w w4/9, 1/9, 1/361 3,5,7,9 2,4,6,8 and = =w w1/3, 1/61 2,3,4,5 , re-

spectively.

2.1. Cascaded LBM for the flow field

The fluid behavior at mesoscopic scale is described by fluid particles
in the framework of the Boltzmann's work and their properties at cer-
tain space and time are defined by moments mαβ of velocity distribution
functions (DFs) f tx ξ( , , ). The evolution of such DFs obeys Boltzmann
Transport Equation which reads
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where ξ is the microscopic velocity, Ω is the collision operator. The
spatial and temporal derivatives in BTE (1) are discretized, the velocity
distribution functions are reduced to finite given by the desired lattice
model, in our case the D Q2 9 and D Q2 5. Then by choosing the cascaded
form of collision operator and incorporating forcing term ∼Fi we end up
with the cascaded lattice Boltzmann equation (CLBE), which in lattice
units reads

+ + = + ⋅ + ∼f t f t Fx c x k( , 1) ( , ) ,i i i (2)

where fi is the ”velocity“ distribution function linked to the ith char-
acteristic velocity,  is transformation matrix, k is a vector of moments
of fi resulting from the cascaded collision operator. The equilibrium
distribution function fi

eq is defined based on the Maxwell-Boltzmann
equilibrium distribution function by
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where ρ is density, cs is the speed of sound and = u vu ( , ) is macroscopic
velocity vector. For the lattice model D Q2 9 we have =c 1/ 3s . The
body force can be modeled by different approaches, those are compared
in Ref. [1] for the problem of a natural convection. We use the forcing
scheme proposed by Ref. [58]. First the velocity field is modified by
known force =Γ (Γ , Γ )x y (which is defined later),
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then expressions for the components to be included in cascaded colli-
sions are
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Fig. 1. Characteristic velocities (links) in 2D for D Q2 9 (left) and D Q2 5 (right) lattice models.
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