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a b s t r a c t

We consider a change-point detection problem for a simple class of Piecewise Deterministic Markov
Processes (PDMPs). A continuous-time PDMP is observed in discrete time and through noise, and the
aim is to propose a numerical method to accurately detect both the date of the change of dynamics and
the new regime after the change. To do so, we state the problem as an optimal stopping problem for a
partially observed discrete-time Markov decision process taking values in a continuous state space and
provide a discretization of the state space based on quantization to approximate the value function and
build a tractable stopping policy. We provide error bounds for the approximation of the value function
and numerical simulations to assess the performance of our candidate policy.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Piecewise Deterministic Markov processes (PDMPs) are a gen-
eral class of non-diffusion processes introduced by M. Davis in
the 80s (Davis, 1984) covering a wide range of applications from
workshop optimization, queuing theory (Davis, 1993), internet
networks (Bardet, Christen, Guillin, Malrieu, & Zitt, 2013), reli-
ability (de Saporta, Dufour, & Zhang, 2016), insurance and fi-
nance (Bäuerle & Rieder, 2011) or biology (Doumic, Hoffmann, and
Krell, & Robert, 2015; Riedler & Thieullen, 2015; Riedler, Thieullen,
& Wainrib, 2012) for instance. PDMPs are continuous time hybrid
processes with a discrete component called mode or regime and
a Euclidean component. The process follows a deterministic tra-
jectory punctuated by random jumps. In the special case where
the Euclidean component is continuous, the jumps correspond
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to a change of regime. For many applications, the regime is not
observed and the Euclidean variable is measured in discrete-time,
through noise. It may be e.g. a degradation or failure of some
component of a system, see Baysse, Bihannic, Gégout-Petit, Prenat,
and Saracco (2014) where the Euclidean component is some cool-
down time that increases with the degradation of the system,
or the cancer cell load of remission patients monitored through
proxy tumor markers at regular follow-up blood tests to detect
relapse (Abbott & Michor, 2006). The aim of this paper is to pro-
pose a fully computable discretization of the value function of
the optimal stopping problem corresponding to the change-point
detection, and derive error bounds for this approximation.We also
use the approximation to build a computable candidate strategy
that should be close to optimality. We assess its performance on
numerical examples.

The general problem of change-point detection can be seen
as an impulse control problem if there are multiple changes in
regime. This is a very difficult problem. Although the optimal
control of PDMPs has attracted a lot of attention since the 80s, see
e.g. Cohen, Madan, Siu, and Yang (2012), Costa and Dufour (2013),
Davis (1993), de Saporta and Dufour (2012), de Saporta, Dufour,
and Geeraert (2017), Dempster and Ye (1995), Gatarek (1992)
and Lenhart (1989), very few works consider such models under
partial observations. In Brandejsky, de Saporta, and Dufour (2013),
the authors consider an optimal stopping problem for PDMPs
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where the jump times are perfectly observed and the post-jump
locations are observed through noise. They derive the dynamic
programming equations of the problem, as well as a numerical
approximation of the value function and a computable ϵ-optimal
stopping time. In Shi, Elliott, and Chen (2016), the authors consider
the problem of state-estimation for a discrete-time and discrete-
space process observed only if threshold conditions are reached.
In Bian and Jiang (2016) the authors introduce an adaptive dynamic
programming algorithm for fully observed linear continuous-time
systems. In Bäuerle and Lange (2018), the authors consider a gen-
eral continuous control problem where both the jump times and
post-jump locations are observed through noise. They reduce the
problem to a discrete-time Markov Decision Process (MDP) and
prove the existence of optimal policies, but provide no numerical
approximation of the value function or optimal strategies.

In the present paper, we make a first step towards solving the
difficult problem of change-point detection of PDMPs when the
jumps are not observed at all. We address the simple case where
there is only one change of regime to detect. Unlike in Lin, Loxton,
Teo, andWu (2012) where the authors control the process to avoid
it reaching a stopping boundary, the goal of this paper is to detect
a jump without controlling the process. The problem can thus be
formulated as an optimal stopping problem for PDMPs under par-
tial observations. However, unlike Bäuerle and Lange (2018) and
Brandejsky et al. (2013) we do not suppose that the observations
are made at or around the jump times. Instead, we suppose that
the observations times are deterministic and on a regular grid
of step size δ. This enables us to formulate the problem as an
optimal stopping problem for a discrete-time partially observed
MDP. The equivalent fully-observed MDP for the filter process
is still in discrete-time but on an infinite state space. We then
propose a two-step discretization of this MDP, following an idea
from de Saporta, Dufour, and Nivot (2016). The first step is a time-
dependent discretization of the state space of the original PDMP.
The second step is a joint discretization of the approximate filter
thus obtained together with an approximation of the observation
process. Note that unlike Bäuerle and Rieder (2011) or de Saporta,
Dufour, Nivot, and (2016), we do notmake the assumption that the
MDP kernel has a density with respect to some fixed probability
measure.We thus obtain a computable approximation of the value
function and prove that it converges to the value function of the
original change-point detection problem when the discretization
parameters are suitably chosen. Based on this approximate value
function, we also propose a computable stopping strategy. The
optimality of this strategy remains an open problem out of the
scope of the present paper, instead we evaluate its performance
on various numerical examples.

Themain discretization toolwe use is optimal quantization. The
quantization of a random variable X consists in finding a finite grid
such that the projection X̂ of X on this grid minimizes some Lp
normof the differenceX−X̂ . There exists an extensive literature on
quantization methods for random variables and processes. The in-
terested reader may for instance consult Gray and Neuhoff (1998)
and Pagès, Pham and Printems (2004b) and the references therein.
Quantization methods have been developed recently in numeri-
cal probability or optimal stochastic control with applications in
finance, see e.g. Bally and Pagès (2003), Bally, Pagès, and Printems
(2005), Pagès (1998) and Pagès et al. (2004b).

The paper is organized as follows. In Section 2, we introduce our
continuous-time PDMP model as well as the observation model.
We define the change-point detection problem as an optimal stop-
ping problem under partial observations and give the equivalent
fully observed dynamic programming equations for the filter pro-
cess. In Section 3, we propose a two-step discretization approach
by quantization to numerically solve the optimization problemand
build a tractable strategy. In Section 4, we fully detail the practical

implementation of our procedure. In Section 5, we investigate the
performance of our candidate strategy and compare our approach
to moving average and Kalman filtering when possible. A con-
clusion is given in Section 6. Proofs of our main statements are
postponed to Appendix

2. Model and problem setting

In this section, we present the special class of PDMPs we focus
on, namely switching flows, define the observation process and
state the change-point detection problem as an optimal stopping
problem under partial observation.We then derive the filter recur-
sive equation and state the equivalent fully observed optimal stop-
ping problem as well as the corresponding dynamic programming
equations.

2.1. Continuous-time PDMP model

We consider the problem of detecting a change-point in the dy-
namic of a special class of PDMPs which is observed with noise on
discrete observation times. The process Xt = (mt , xt , ut ) is defined
on a state space E = M × K × R+, where M = {0, 1, . . . , d} is
the finite set of modes,K is a compact subset ofR representing the
position of the process and the third coordinate is the running time
since the last jump, needed to ensure the process is Markovian.

Starting from point (0, x, 0) in E , which means starting from
mode 0 and position x at time 0, the first (and only) jump time T of
the process has distribution

P(T > t|X0 = (0, x, 0)) = e−
∫ t
0 λ(s)ds,

where λ is a measurable function from R+ onto R+ representing
the jump intensity. For t ∈ [0, T ), Xt = (0, xt , t) with xt = Φ0(x, t)
for some flow Φ0 : K×R+ → K being the solution of an ordinary
differential equation.

At time T , the process selects a new mode i ∈ {1, . . . , d} with
positive probability πi.

For t ≥ T , Xt = (i, xt , t − T ), where xt = Φi(xT , t − T ) for some
flowΦi : K×R+ → K being the solution of an ordinary differential
equation.

The assumption that the flowsΦm donot dependon the running
time is made only to keep notation simple and is not actually
required, see Example 2. As we will see in the sequel, solving the
change-point detection problem is not straightforward, even for
such simple dynamics.

We suppose that the observation times (tn)n∈N are deterministic
and on a regular grid of step size δ until a finite horizonNδ, and that
a noisy observation of xtn is available at each time tn:

Yn = F (Xtn )+ εn = F (xtn )+ εn, (1)

where F is a deterministic function, (εn) are i.i.d. real-valued ran-
domvariableswith density f with respect to the Lebesguemeasure
on R and independent from the process (Xt ). We assume that Y
takes its values in Y, subset of R. We will further denote X =
M× K.

2.2. Examples

The following toy examples will be extensively investigated
numerically in Section 5. In all examples, the jump intensity is of
the form λ(t) = t so that the probability to jump gets higher as
time goes by. The distribution π = (π1, . . . , πd) is the uniform dis-
tribution. The distribution of the noise is a centered Gaussian with
variance σ 2 truncated at [−s, s] for some s ∈ R. We investigate
several forms for the flow. The function linking the process and the
observations will be either F (x) = x or F (x) = x−1.
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