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a b s t r a c t

In this article we derive a Pontryagin maximum principle (PMP) for discrete-time optimal control
problems on matrix Lie groups. The PMP provides first order necessary conditions for optimality; these
necessary conditions typically yield two point boundary value problems, and these boundary value
problems can then be solved to extract optimal control trajectories. Constrained optimal control problems
for mechanical systems, in general, can only be solved numerically, and this motivates the need to derive
discrete-time models that are accurate and preserve the non-flat manifold structures of the underlying
continuous-time controlled systems. The PMPs for discrete-time systems evolving on Euclidean spaces
are not readily applicable to discrete-time models evolving on non-flat manifolds. In this article we
bridge this gap and establish a discrete-time PMP on matrix Lie groups. Our discrete-time models are
derived via discretemechanics, (a structure preserving discretization scheme) leading to the preservation
of the underlying manifold under the dynamics, thereby resulting in greater numerical accuracy of our
technique. This PMP caters to a class of constrained optimal control problems that includes point-wise
state and control action constraints, and encompasses a large class of control problems that arise in various
field of engineering and the applied sciences.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The Pontryagin maximum principle (PMP) provides first order
necessary conditions for a broad class of optimal control problems.
These necessary conditions typically lead to two-point boundary
value problems that characterize optimal control, and these prob-
lems may be solved to arrive at the optimal control functions.
This approach is widely applied to solve optimal control problems
for controlled dynamical systems that arise in various fields of
engineering including robotics, aerospace (Agrachev & Sachkov,
2004; Brockett, 1973; Lee, Leok, & McClamroch, 2008a, b), and
quantum mechanics (Bonnard & Sugny, 2012; Khaneja, Brockett,
& Glaser, 2001).

Constrained optimal control problems for nonlinear
continuous-time systems can, in general, be solved only numeri-
cally, and two technical issues inevitably arise. First, the accuracy
guaranteed by a numerical technique largely depends on the dis-
cretization of the continuous-time systemunderlying the problem.
For control systems evolving on complicated state spaces such as
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manifolds, preserving themanifold structure of the state space un-
der discretization is a nontrivial matter. For controlled mechanical
systems evolving on manifolds, discrete-time models preferably
are derived via discrete mechanics since this procedure respects
certain system invariants such as momentum, kinetic energy,
(unlike other discretization schemes derived from Euler’s step)
resulting in greater numerical accuracy (Marsden & West, 2001;
Ober-Blöbaum, 2008; Ober-Blöbaum, Junge, & Marsden, 2011).
Second, classical versions of the PMP are applicable only to optimal
control problems in which the dynamics evolve on Euclidean
spaces, and do not carry over directly to systems evolving on
more complicated manifolds. Of course, the PMP, first established
by Pontryagin and his students (Gamkrelidze, 1999; Pontryagin,
1987) for continuous-time controlled systems with smooth data,
has, over the years, been greatly generalized, see e.g., Agrachev and
Sachkov (2004), Barbero-Liñán and Muñoz Lecanda (2009), Clarke
(2013), Clarke (1976), Dubovitskii and Milyutin (1968), Holtzman
(1966), Milyutin and Osmolovskii (1998), Mordukhovich (1976),
Sussmann (2008) andWarga (1972). However, there is still no PMP
that is readily applicable to control systems with discrete-time
dynamics evolving on manifolds. As is evident from the preceding
discussion, numerical solutions to optimal control problems, via
digital computational means, need a discrete-time PMP. Here we
establish a PMP for a class of discrete-time controlled systems
evolving on matrix Lie groups.

Optimal control problems on Lie groups are of great interest
due to their wide applicability across the discipline of engineer-
ing: robotics (Bullo & Lynch, 2001), computer vision (Vemulapalli,
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Arrate, & Chellappa, 2014), quantum dynamical systems (Bonnard
& Sugny, 2012; Khaneja et al., 2001), and aerospace systems such
as attitude maneuvers of a spacecraft (Kobilarov &Marsden, 2011;
Lee et al., 2008b; Saccon, Hauser, & Aguiar, 2013). The conjunction
of discretemechanics and optimal control (DMOC) for solving con-
strained optimal control problems while preserving the geomet-
ric properties of the system has been explored in Ober-Blöbaum
(2008). The aforementioned DMOC technique is a direct geometric
optimal control technique that differs from our technique on the
account that our technique is an indirect method (Trélat, 2012);
consequently (Trélat, 2012), the proposed technique is likely to
provide more accurate solutions than the DMOC technique. An-
other important feature of our PMP is that it can characterize
abnormal extremals unlike DMOC and other direct methods. Early
results on indirect methods for optimal control problems on Lie
groups for discrete-time systems derived via discrete mechanics
may be found in Kobilarov and Marsden (2011) and Lee et al.
(2008a, b) . Another, such technique is to derive higher order vari-
ational integrators to solve optimal control problems (Colombo,
Ferraro, & Martín de Diego, 2016; Colombo, Jiménez, & Martín de
Diego, 2012). It is worth noting that simultaneous state and action
constraints have not been considered in any of these formulations.
The inclusion of state and action constraints in optimal control
problems, while of crucial importance in all real-world problems,
makes constrained optimal control problems technically challeng-
ing, and, moreover, classical variational analysis techniques are
not applicable in deriving first order necessary conditions for such
constrained problems (Pontryagin, 1987, p. 3). More precisely,
the underlying assumption in calculus of variations that an ex-
tremal trajectory admits a neighborhood in the set of admissible
trajectories does not necessarily hold for such problems due to
the presence of the constraints. This article addresses a class of
optimal control problems in which the discrete-time controlled
system dynamics evolve on matrix Lie groups, and are subject to
simultaneous state and action constraints. We derive first order
necessary conditions bypassing techniques involving classical vari-
ational analysis. Discrete-time PMPs for various special cases are
subsequently derived from the main result.

A discrete-time PMP is fundamentally different from a
continuous-time PMP due to intrinsic technical differences be-
tween continuous and discrete-time systems (Bourdin & Trélat,
2016, p. 53).While a significant research effort has been devoted to
developing and extending the PMP in the continuous-time setting,
by far less attention has been given to the discrete-time versions.
A few versions of discrete-time PMP can be found in Boltyan-
skii, Martini, and Soltan (1999), Dubovitskii (1978) and Holtzman
(1966).1 In particular, Boltyanskii developed the theory of tents
using the notion of local convexity, and derived general discrete-
time PMPs that address a wide class of optimal control problems
in Euclidean spaces subject to simultaneous state and action con-
straints (Boltyanskii, 1975). This discrete-time PMP serves as a
guiding principle in the development of our discrete-time PMP on
matrix Lie groups even though it is not directly applicable in our
problem; see Remark 12 ahead for details.

This article unfolds as follows: our main result, a discrete-time
PMP for controlled dynamical systems on matrix Lie groups, and
its applications to various special cases are derived in Section 2.
Section 3 provides a detailed proof of our main result, and the
proofs of the other auxiliary results and corollaries are collected
in the Appendices.

1 Some early attempts in establishing discrete-time PMP in Euclidean spaces
have been mathematically incorrect (Bourdin & Trélat, 2016, p. 53).

Fig. 1. Rigid body orientation.

2. Background and main results

This section contains an introduction to Lie group variational
integrators that motivates a general form of discrete-time systems
on Lie groups. Later in this sectionwe establish a discrete-timePMP
for optimal control problems associated with these discrete-time
systems.

To illustrate the engineering motivation for our work, and ease
understanding, we first consider an aerospace application. Let us
first consider an example of control of spacecraft attitude dynamics
in continuous time. The configuration space SO(3) (the set of 3× 3
orthonormal matrices with real entries and determinant 1) of a
spacecraft performing rotational maneuvers (Lee et al., 2008b), is a
matrix Lie groupwithmatrixmultiplication as the groupoperation.
Let R ∈ SO(3) be the rotation matrix that relates coordinates in the
spacecraft body frame to the inertial frame, (see Fig. 1,) let ω ∈ R3

be the spacecraft momentum vector in the body frame, and let
u ∈ R3 be the torque applied to the spacecraft in the body frame.
The attitude dynamics in this setting is given in the spacecraft body
frame (Lee et al., 2008b) as:

Ṙ = Rω̂, (1)
Jω̇ = ω̂Jω + u, (2)

where J is the 3 × 3 moment of inertia matrix of the spacecraft
in the body frame, ω̂ ∈ so(3) and so(3) (the set of 3 × 3 skew-
symmetric matrices with real entries) is the Lie algebra (Sachkov,
2009) corresponding to the Lie group SO(3). The first equation (1)
describes the kinematic evolution and the second equation (2)
describes the dynamics.

Let us, as a first step, uniformly discretize the continuous-time
model (1)–(2) to arrive at an approximate discrete-time model.
Fixing a step length h > 0, we have the discrete-time instances
t ∈ {0} ∪ N corresponding to the continuous-time instances th ∈

R in a standard way. Therefore, the system configurations at the
discrete-time instances defined above are given by

Rt := R(th), ωt := ω(th) for all t ∈ {0} ∪N.

If we assume that spacecraft body momentum is constant on
the interval [th, (t + 1)h[, i.e., ω(s) = ω(th) for s ∈ [th, (t + 1)h[,
then the corresponding kinematic equations Ṙ(s) = R(s)ω̂t for s ∈
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