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a b s t r a c t

How to efficiently identify multiple-input multiple-output (MIMO) linear parameter-varying (LPV)
discrete-time state-space (SS) models with affine dependence on the scheduling variable still remains an
open question, as identificationmethods proposed in the literature suffer heavily from the curse of dimen-
sionality and/or depend on over-restrictive approximations of the measured signal behaviors. However,
obtaining an SS model of the targeted system is crucial for many LPV control synthesis methods, as these
synthesis tools are almost exclusively formulated for the aforementioned representation of the system
dynamics. Therefore, in this paper,we tackle the problemby combining state-of-the-art LPV input–output
(IO) identification methods with an LPV-IO to LPV-SS realization scheme and a maximum likelihood
refinement step. The resulting modular LPV-SS identification approach achieves statical efficiency with
a relatively low computational load. The method contains the following three steps: (1) estimation of
the Markov coefficient sequence of the underlying system using correlation analysis or Bayesian impulse
response estimation, then (2) LPV-SS realization of the estimated coefficients by using a basis reduced
Ho–Kalman method, and (3) refinement of the LPV-SS model estimate from a maximum-likelihood
point of view by a gradient-based or an expectation–maximization optimization methodology. The
effectiveness of the full identification scheme is demonstrated by aMonte Carlo studywhere our proposed
method is compared to existing schemes for identifying a MIMO LPV system.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The linear parameter-varying (LPV) modeling paradigm offers
an attractive model class to capture nonlinear and/or time-varying
systemswith a parsimonious parametrization. The LPVmodel class
preserves the linear signal relation between the inputs and outputs
of the system, however, these linear relations are functions of a
measurable, time-varying signal, the scheduling variable, denoted
as p. This scheduling signal can be any combination of inputs, mea-
surable process states, outputs, ormeasurable exogenous variables
and, in addition, these signals can be filtered by any arbitrary func-
tional relation. Hence, the LPV modeling paradigm can represent
both non-stationary and nonlinear behavior of a wide variety of
physical or chemical processes, e.g., see Bachnas, Tóth,Mesbah, and
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Ludlage (2014), Groot Wassink, Van de Wal, Scherer, and Bosgra
(2005), van Wingerden, Houtzager, Felici, and Verhaegen (2009)
and Veenman, Scherer, and Köroǧlu (2009).

The majority of LPV control synthesis methods are based upon
the assumption that an LPV state-space (SS) model of the system
is available, especially with static and affine dependence of the
involved matrix coefficients on the scheduling variable p, e.g., Mo-
hammadpour and Scherer (2012). Hence, efficient identification
of LPV-SS models in terms of computational load, statistical, and
performance properties has intensively been researched. Concep-
tually, LPV identification can be performed as: (i) the interpolation
of local LTI models estimated from multiple experiments around
fixed operating points, i.e., with constant p, often referred to as the
local identification setting; or (ii) a direct model estimation prob-
lem, i.e., the global identification setting, which requires the exper-
imental data with a varying p which is informative to uniquely
identify the considered model parameters. Accordingly, global
identification approaches include scheduling dynamics, see Bach-
nas et al. (2014) for a detailed comparison between the two set-
tings. In this paper, we will focus on the global setting and the
identification of discrete-time models.

In the global setting, an attractive identification approach is
the minimization of the ℓ2-loss in terms of the prediction-error
associatedwith themodel. Approaches aiming at this objective are
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often called prediction-error methods (PEM). Early approaches in
the PEM setting were proposed under the unrealistic assumption
of full state measurements (Nemani, Ravikanth, & Bamieh, 1995;
Rizvi, Mohammadpour, Tóth, & Meskin, 2015). To overcome this
assumption and to directly minimize the ℓ2 loss, gradient-based
(GB) methodologies have been introduced, e.g., see Lee and Poolla
(1997), Verdult, Bergboer, and Verhaegen (2003) and Wills and
Ninness (2008, 2011). Recently, an expectation–maximization (EM)
algorithm has been developed for LPV-SS models (Wills & Nin-
ness, 2011), extending the set of GB methods. The EM method is
more robust to an inaccurate initial estimate compared to the GB
PEM; however, its convergence rate is much slower near the opti-
mum (Watson & Engle, 1983). Due to the nonlinear optimization
associated with the EM and GB methods, their convergence to the
maximum-likelihood (ML) estimate depends heavily on a proper
initial seeding. Besides prediction-error identification methods,
LPV grey-box (Angelis, 2001; Gáspár, Szabó, & Bokor, 2007) and
LPV set-membership (SM) (Bianchi & Sánchez-Peña, 2009; Ceronea,
Piga, & Regruto, 2013; Novara, 2011) identification approaches
have been developed. Grey-box schemes require detailed knowl-
edge of the dynamical structure of the system with only a few
unknown parameters, which are often estimated by a Kalman like
filtering strategy. The SM methods characterize noise and dis-
turbances in a deterministic bounded-error compared to the
stochastic description in PEM. In general, SM approaches have a
significantly higher computational load compared to direct PEM
and rely on convex outer-approximations. Hence, in order to
achieve stochastically interpretable and computationally attrac-
tive identification of LPV-SS models, it is favorable to apply GB and
EM based PEM. However, these methods require a proper initial
estimate close to the global optimum (ML estimate) in order to
exploit their advantageous properties (Problem 1).

To achieve initialization of direct PEM, alternative methods can
be introduced that rely on realization theory by sacrificing ML
properties for an estimation problem solvable via convex opti-
mization. These methods boil down to: first identifying an LPV-IO
model, with well-established methods available in the literature
(e.g., see Laurain, Gilson, Tóth, & Garnier, 2010; Lopes dos Santos,
Azevedo-Perdicoúlis, Novara, Ramos, & Rivera, 2011; Mohammad-
pour & Scherer, 2012); and, secondly, to execute an exact realiza-
tion of the identified LPV-IO form to an LPV-SS model. However,
such an exact realization will, in general, result in relations with
rational, dynamic dependence on the scheduling variable or lead
to a non-minimal state realization if the static, affine dependence
is enforced to be preserved (Tóth, 2010). Moreover, such exact
algebraic realization methods have a high computational cost. Re-
cently introduced LPV realization theory based schemes, so-called
subspace identification (SID) methods, aim to avoid the aforemen-
tioned problem by achieving data-driven state-space realization.
SID schemes can apply direct LPVHo–Kalman like realization (Tóth,
Abbas, &Werner, 2012) to obtain the SSmatrices fromspecific LPV-
IO models that are identified by a least-squares method; or have
an intermediate projection step, i.e., (1) identify an IO structure
using convex optimization, (2) find a projection to estimate the
unknown state-sequence via matrix decompositionmethods, then
(3) estimate the SS matrices in a least-squares fashion, e.g., see Fe-
lici, vanWingerden, and Verhaegen (2007), Larimore (2013), Lopes
dos Santos, Ramos, and de Carvalho (2007) and vanWingerden and
Verhaegen (2009). However, to attain a convex problem, the latter
class of SID methods usually depend on over-restrictive approx-
imations of the signal behaviors and/or the number of observed
variables grows exponentially. As a consequence, the estimation
problem still has a high computational demand, making it inappli-
cable for real-world systems (Problem 2). The aforementioned re-
alization based schemes provide an LPV-SS model estimate which
is not minimized w.r.t. any criterion and, therefore, it is not ‘‘opti-
mal’’ in an ML sense. Hence, to solve Problem 1 and 2, i.e., to have

efficient initialization of direct PEM methods, we require novel
computationally attractive SS identification methods capable of
providing estimates that are sufficiently close to the global PEM
optimum.

Based on Problems 1 and 2, we can conclude that computa-
tionally and stochastically efficient identification of LPV-SS mod-
els on real-world sized problems remains still an open question.
Hence, the goal of this paper is to provide a maximum likelihood
identification scheme for LPV-SS models in the global, open-loop
identification setting, which can provide an integrated solution
for both problems. Specifically, to solve Problem 2, we propose to
identify surrogate LPV finite impulse response (FIR) models via a
novel computationally efficient correlation analysis (CRA) method
or via an empirical MIMO Bayesian estimation technique. Then,
realization of these models is accomplished via a novel basis re-
duced LPVHo–Kalman scheme,which grows linearly in complexity
compared to previous methods with exponential growth, which
were introduced originally in Cox and Tóth (2016) and Cox, Tóth,
and Petreczky (2015). Next, Problem 1 is solved by integrating the
proposed pre-estimation methods into the GB and EM schemes to
obtain anML estimate. In addition, to improve the numerical prop-
erties of the GB method, we extend the enhanced Gauss–Newton
method (Wills & Ninness, 2008) to the LPV setting. Combining
these methods results in a novel three-step approach with a mod-
ular structure, achieving both favorable computational properties
and enabling ML estimation.

This paper is organized as follows: first, LPV-SS models with
general noise structure are analyzed and compared with models
relaying on an innovation structure to highlight modeling limi-
tations of the latter form considered in many LPV SID methods.
Then, the considered LPV-SS identification problem is introduced
(Section 2). Next, we present our modular identification method,
defined in three steps: (1) estimate the FIRmodel of the underlying
system using CRA or MIMO Bayesian estimation (Section 3), then
(2) compute an LPV-SS realization based on the estimated coeffi-
cients by using a Ho–Kalman like method (Section 4), and (3) to
have anML estimate, refine the LPV-SSmodel by GB and/or EM op-
timization (Section 5). The contribution of this paper is to provide
a detailed overview of the methods applied and to demonstrate
that LPV identification of moderate sized models is possible with
the proposed scheme. The efficiency of the combined approach
is demonstrated by a Monte Carlo study and it is compared to
existing LPV-SS identification schemes (Bianchi & Sánchez-Peña,
2009; Lopes dos Santos, Ramos, & Martins de Carvalho, 2008; van
Wingerden & Verhaegen, 2009) (Section 6).

2. The LPV identification problem

2.1. Technical preliminaries

Wedefine a random variable f as ameasurable function f : Ω →

Rn, which induces a probability measure P on (Rn,B(Rn)) with
an associated Borel measurable space B(Rn) (Bogachev, 2007). As
such, a realization ν ∈ Ω of P, denoted ν ∼ P, defines a realization
f of f, i.e., f := f(ν). A stochastic process x is a collection of random
variables xt : Ω → Rn indexed by the set t ∈ Z (discrete
time), given as x = {xt : t ∈ Z}. A realization νt ∈ Ω of
the stochastic process defines a signal trajectory x := {xt (νt ) :

t ∈ Z}. We call a stochastic process x stationary if the probability
distribution of xt and joint probability distribution of (xt , . . . , xt+k)
for any k ∈ N+ are independent of the time-index t . In addition,
a stationary process consisting of uncorrelated random variables
with zero mean and finite variance is called a white noise process.
The ring of all real meromorphic functions with finite dimensional
domain is denoted by R and the operator ⋄ : (R,PZ) → RZ

denotes (h ⋄ p)t = h(pt+τ1 , . . . , pt , . . . , pt−τ2 ) with τ1, τ2 ∈ N0.
The time-shift operator is denoted by q, i.e., qx(t) = x(t + 1), and
the set {s, s + 1, . . . , v} ⊂ N0 is denoted as Ivs .
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