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a b s t r a c t

This paper addresses the boundary stabilization of a flexible wing model, both in bending and twisting
displacements, under unsteady aerodynamic loads, and in presence of a store. The wing dynamics is
captured by a distributed parameter system as a coupled Euler–Bernoulli and Timoshenko beam model.
The problem is tackled in the framework of semigroup theory, and a Lyapunov-based stability analysis
is carried out to assess that the system energy, as well as the bending and twisting displacements, decay
exponentially to zero. The effectiveness of the proposed boundary control scheme is evaluated based on
simulations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Modern aerospace systems such as aircraft, unmanned aerial
vehicles (UAVs), and microaerial vehicles are subject to stringent
performance requirements including high maneuverability and
extended autonomy. The global trend to achieve the required level
of performance consists in reducing the mass of the system by a
massive integration of compositematerials. However, it results in a
decrease of the structure rigidity. In particular, lightweight flexible
wings are subject to stronger aeroelastic phenomenawhich are the
result from interactions between aerodynamic, elastic and inertial
forces. Such phenomena can significantly degrade the performance
of an aircraft by introducing undesired couplings between the
flexiblemodes and the flight dynamics (Shearer & Cesnik, 2007; Su
& Cesnik, 2010), and may also jeopardize the integrity of its struc-
ture (Mukhopadhyay, 2003). These phenomena can be amplified
in the case of a store located under the wing with the emergence
of the so-called store-induced oscillations (Beran, Strganac, Kim,
& Nichkawde, 2004; Bialy, Chakraborty, Cekic, & Dixon, 2016).
Therefore, the active control of aeroelastic phenomena has become
a topic of primary interest.
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One of the most noticeable contributions for the control of
aeroelastic phenomena is the Benchmark Active Control Tech-
nology (BACT) wind-tunnel model developed by NASA Langley
Research Center (Scott, Hoadley, Wieseman, & Durham, 2000). The
BACT is modeled as a two-degree-of-freedom aeroelastic wing
section capturing the first bending and twistingmodes of a flexible
wing. The control design strategy of the BACT for flutter suppres-
sion, including experimental tests, has been widely investigated in
the literature (Bhoir & Singh, 2004; Ko, Strganac, & Kurdila, 1999;
Mukhopadhyay, 2000). Nevertheless, the BACT cannot fully repre-
sent the dynamics of real flexible wings. Indeed, the flexible wing
can bemore accuratelymodeled by a distributed parameter system
of two coupled partial differential equations (PDEs) describing
the dynamics in bending and twisting displacements respectively
(Bialy et al., 2016; Zhang, Xu, Nair, & Chellaboina, 2005; Ziabari &
Ghadiri, 2010).

The study on flexible structures described by distributed sys-
tems and their interactions with the flow-field has attracted many
attention in the last decades (Stanewsky, 2001). The bending dy-
namics of a panel evolving in different flow-field regimes have
been studied for clamped (Chueshov & Lasiecka, 2012; Lasiecka &
Webster, 2016) and clamped-free (Chueshov, Dowell, Lasiecka, &
Webster, 2016) boundary conditions in case of a distributed veloc-
ity feedback. The coupled Euler–Bernoulli and Timoshenko beam
model, describing both undamped bending and torsion flexible
displacements, has also been investigated for self-straining actu-
ators employed as boundary control inputs without (Balakrishnan,
Shubov, & Peterson, 2004) and with (Balakrishnan, 2001, 2003) an
external load generated by the flow-field.
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This paper addresses the boundary stabilization problem of a
flexible wing whose dynamics are captured by a coupled Euler–
Bernoulli and Timoshenko beam model in the presence of a store
located at the wing tip. Unlike the self-straining actuation setup
considered in Balakrishnan (2001, 2003) and Balakrishnan et al.
(2004), the actuation scheme consists in flaps located at the wing
tip to locally generate lift force and torsional momentum, resulting
in distinct boundary conditions of the coupled PDEs. Furthermore,
the model considered in this work includes the contribution of
the Kelvin–Voigt damping (Zhang & Guo, 2011) in both bending
and twisting axes. This model is a linear and damped version of
the one presented in Bialy et al. (2016), while the aerodynamic
loads are supposed to be unsteady. A similar problem, namely a
flapping wing UAV, is considered in Paranjape, Guan, Chung, and
Krstic (2013). The model used includes the contribution of the
Kelvin–Voigt damping,while assuming that aerodynamic loads are
unknown but bounded. Themethod of backstepping is used for the
boundary control of the spatial integral of the state variables to
track the net aerodynamic forces on the wing. The same model is
considered in He and Zhang (2017) for which a Lyapunov-based
stabilization control is developed to achieve bounded bending
and twisting deflections in the presence of aerodynamic load dis-
turbances. It is worth noting that as pointed out in Curtain and
Morris (2009), an Euler–Bernoulli beam model with Kelvin–Voigt
damping may not be well-posed if the boundary conditions do
not explicitly include the Kelvin–Voigt damping term in a correct
manner. Therefore, although the existence of Kelvin–Voigt damp-
ing may intuitively be helpful for system stabilization, a rigorous
well-posedness analysis is still needed to guarantee the expected
behavior of the considered systemwhich remains a more complex
setting than a single beam. This constitutes one of the main moti-
vations of the present work.

It should be noticed that a commonly used assumption for
Lyapunov-based designs in the works (Bialy et al., 2016; He &
Zhang, 2017; Paranjape et al., 2013) is that either the system
energy or the aerodynamic loads should be bounded. Furthermore
it is also assumed the existence and the regularity of the system
trajectories and their partial derivatives up to a certain order.
These assumptions, which can be justified by physical intuitions
(De Queiroz, Dawson, Nagarkatti, & Zhang, 2012; De Queiroz &
Rahn, 2002), can considerably simplify closed-loop stability anal-
ysis. However, they imply the well-posedness of the underlying
PDEs, which is a quite strong condition. The main objective of this
work is to show that these assumptions can be relaxed. To this aim,
we formulate the problem under an abstract form that allows the
application of the semigroup theory (Curtain & Zwart, 2012; Pazy,
2012). Due to the presence of the store, the boundary conditions
related to the control strategy take the form of ODEs (Guo, 2002).
It results in a system in abstract form composed of two coupled
PDEs and two coupled ODEs.We show that the closed-loop system
with the proposed boundary control admits a C0-semigroup and is
well-posed. The closed-loop stability is derived from a Lyapunov-
based analysis, which shows that the above C0-semigroup is ex-
ponentially stable. The results of this work allow confirming the
validity of most existing control schemes reported in the literature
for similar settings under even much less restrictive conditions.

The remainder of the paper is organized as follows. The wing
model, along with the associated abstract form, are introduced
in Section 2. The well-posedness of the problem is analyzed in
Section 3 in the framework of semigroup theory. Then, a Lyapunov-
based analysis is carried out in Section 4 to assess that the
system energy, as well as bending and twisting displacements,
exponentially decay to zero. Finally, numerical simulations are pre-
sented in Section 5 to illustrate the performance of the closed-loop
system.

Notations (Leoni, 2009; Royden & Fitzpatrick, 1988): R+ and R∗
+

denote the sets of non-negative and positive real numbers, re-
spectively. Let L2(0, l) be the set of Lebesgue squared integrable

real-valued functions over (0, l) endowed with its natural norm
denoted by ∥·∥L2(0,l). For any m ∈ N, Hm(0, l) denotes the usual
Sobolev space, which is defined as the set of f ∈ L2(0, l), such that
f admitsm successiveweak derivatives, denoted by f ′, f ′′, . . . , f (m),
in L2(0, l). Denoting by AC[0, l] the set of all absolutely continuous
functions on [0, l], H1(0, l) ⊂ AC[0, l] in the sense that for any
f ∈ H1(0, l), there exists a unique absolutely continuous function
g ∈ AC[0, l] such that f = g in H1(0, l). We note Hm

L (0, l) = {f ∈

Hm(0, l) : f (0) = f ′(0) = · · · = f (m−1)(0) = 0}. For a given
normed vector spaces (E, ∥·∥E),L (E) denotes the space of bounded
linear transformations from E to E. The range of a given operator
A is denoted by R(A ) while its resolvent set is denoted by ρ(A ).
The successive partial derivatives of a sufficiently regular function
f are denoted in subscript, e.g., fty stands for ∂2f /(∂t∂y).

2. Problem setting and boundary control law

2.1. Flexible wing model

Let l ∈ R∗
+

be the length of the wing, ρ ∈ R∗
+

the mass per
unit of span, Iw ∈ R∗

+
the moment of inertia per unit length,

EI ∈ R∗
+

(resp. GJ ∈ R∗
+
) the bending (resp. torsional) stiffness,

ηω ∈ R∗
+

(resp. ηφ ∈ R∗
+
) the bending (resp. torsional) Kelvin–

Voigt damping coefficient, and xc ∈ R the distance between the
wing center of gravity and the elastic axis of the wing. The store at
the wing tip is characterized by its mass ms ∈ R∗

+
and its moment

of inertia Js ∈ R∗
+
. We define the two following symmetric definite

positive matrices:

M ≜

[
ρ ρxc
ρxc I∗w

]
, Ms ≜

[
ms msxc
msxc J∗s

]
, (1)

with I∗w ≜ Iw+ρx2c and J∗s ≜ Js+msx2c . Introducing cω =
√
EI/ρ and

cφ =
√
GJ/Iw , the bending and twisting dynamics are described by

the following coupled PDEs (Bialy et al., 2016; He & Zhang, 2017;
Paranjape et al., 2013):

M
[
ωtt
φtt

]
+

[
ρc2ω(ωyy + ηωωtyy)yy
−Iwc2φ(φy + ηφφty)y

]
=

[
Fa
Ma

]
, (2)

where the functions ω : [0, l] × R+ → R and φ : [0, l] × R+ → R
denote, respectively, the bending and twisting displacements at
the location y ∈ [0, l] along the wing span and at time t ≥ 0 and
Fa : [0, l]×R+ → R andMa : [0, l]×R+ → R denote, respectively,
the aerodynamic lift force and pitching moment applied at the
location y ∈ [0, l] and at time t ≥ 0. They are expressed under
the following unsteady form:[

Fa
Ma

]
≜

[
αωφ + βωφt + γωωt
αφφ + βφφt + γφωt

]
, (3)

where αω, βω, γω, αφ, βφ, γφ ∈ R+. This model, commonly em-
ployed in finite dimension (Bhoir & Singh, 2004; Ko et al., 1999;
Mukhopadhyay, 2000), is a trade-off between the used steady form
of Bialy et al. (2016) and the unmodeled black-box representation
in He and Zhang (2017) and Paranjape et al. (2013). The boundary
conditions for the tip-based control scheme, in the presence of a
store (Bialy et al., 2016), considered in this work are such that, for
any t ≥ 0,

ω(0, t) = ωy(0, t) = ωyy(l, t) = φ(0, t) = 0, (4a)

Ms

[
ωtt (l, t)
φtt (l, t)

]
=

[
Ltip(t) + ρc2ω(ωyy + ηωωtyy)y(l, t)
Mtip(t) − Iwc2φ(φy + ηφφty)(l, t)

]
, (4b)

where Ltip : R+ → R andMtip : R+ → R are the tip control inputs.
More precisely, Ltip(t) andMtip(t) denote the aerodynamic lift force
and pitchingmoment generated at time t by the flaps located at the
wing tip. Finally, the initial conditions are given, for any y ∈ (0, l),
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