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a b s t r a c t

In this paper, we consider the global optimal consensus problem for discrete-time multi-agent systems
with bounded control protocols over a fixed anddirected communicationnetwork. Each agent is described
by a discrete-time single integrator and endowed with a quadratic objective function which is private
to itself. For each agent, we develop two bounded distributed protocols: bounded proportional–integral
(PI) protocol and bounded integral (I) protocol, based on the information received from its neighboring
agents through the communication network and the gradient of its own objective function.We show that
the proposed bounded distributed protocols with properly chosen parameters solve the global optimal
consensus problem, i.e., the multi-agent system achieves consensus at a state that minimizes the sum
of the objective functions, if the directed communication network is strongly connected and detailed
balanced.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal consensus, which can also be viewed as distributed
optimization, where the agents reach a consensus state that mini-
mizes the sum of the objective functions of all agents, has received
substantial attention. Various distributed algorithms have been
proposed to solve the optimal consensus problem, see, e.g., the
survey paper (Nedić, 2015) and the references therein.

However most studies have not considered the physical con-
straint such as bounded controls. On the other hand, the bound
control requirement is realistic in physical applications since
every actuator is subject to saturation. Thus, the study of the
global optimal consensus problem with bounded controls is of
great importance. In Xie and Lin (2017), the authors developed
a bounded proportional–integral distributed protocol to solve
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the global optimal consensus problem for continuous-time single
integrators.

Our work is motivated by Xie and Lin (2017) and can be viewed
as an extension of its results to the discrete-time setting. More
specifically, we consider the global optimal consensus problem,
where each agent is described by a discrete-time single integrator
and is associated with its own private objective function. For each
agent, we develop both a bounded proportional–integral protocol
and a bounded integral distributed protocol, based on the gradient
of its own objective function and the information received from its
neighboring agents through the underlying communication net-
work.We show that these proposed bounded distributed protocols
with properly chosen parameters solve the global optimal consen-
sus problem if the directed communication network is strongly
connected and detailed balanced.

2. Problem formulation

We consider a multi-agent system of N identical discrete-time
single-integrator systems

xi(k + 1) = xi(k) + ui(k), i ∈ V = {1, 2, . . . ,N}, (1)

where xi ∈ R and ui ∈ R are the state and input of agent i,
respectively, |ui| ≤ umax for some positive scalar umax.

Each agent i ∈ V has a local convex objective function fi :

R → R, which is only known to itself. The global objective function
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of the multi-agent system is f (x) =
∑N

i=1fi(x). The goal of the
optimal consensus (distributed optimization) problem is to design
distributed protocols, under which, the multi-agent system (1)
reaches consensus at a state that minimizes f (x). Throughout the
paper,we assume that this optimization problem is feasible. It then
follows from Bertsekas (1999) that, if the local objective functions
are strictly convex, then there exists a unique optimizer x∗

∈

R. Moreover, the necessary and sufficient optimality condition is
∇f (x∗) =

∑N
i=1∇fi(x∗) = 0.

The local communication is described by a directed weighted
graph G = (V , E , A ), with the set of agents V = {1, . . . ,N},
the set of edges E ⊆ V × V , and the weighted adjacency matrix
A = [aij] ∈ RN×N , where aij > 0 if and only if (j, i) ∈ E and aij = 0
otherwise. We also assume that there are no self-loops, i.e., aii = 0
for i ∈ V .

We make the following assumptions.

Assumption 1. The digraph G is strongly connected and detailed
balanced.

For a digraph satisfying Assumption 1, there exist some real
numbers ωi > 0, i = 1, 2, . . . ,N , such that the coupling weights
of the graph satisfy ωiaij = ωjaji for all i, j = 1, 2, . . . ,N (Jiang
& Wang, 2009). We next define L̃ = diag{ω}L, where diag{ω} =

diag{ω1, ω2, . . ., ωN}, and L is the Laplacianmatrix associated with
the directed graph, defined as L = [ℓ]ij ∈ RN×N with ℓii =

∑N
j=1aij

and ℓij = −aij for j ̸= i. Note that L̃ is a symmetric Laplacianmatrix.

Assumption 2. The objective function fi : R → R, i ∈ V , is
quadratic and is given by fi(x) = aix2 + bix + ci, where ai > 0.

We aim to solve the global optimal consensus problem for the
multi-agent system (1) with bounded protocols. More specifically,
for each agent i ∈ V , we design a bounded distributed protocol ui
with |ui| ≤ umax, under which, the multi-agent system achieves
consensus at a state x∗, i.e., limk→∞xi(k) = x∗ for all i ∈ V .

3. Main results

Inspired by the bounded distributed continuous-time protocol
proposed in Xie and Lin (2017), we design the following bounded
distributed control protocol,

vi(k + 1) = vi(k) + αβωi

N∑
j=1

aij(xi(k) − xj(k)), vi(0) = 0, (2a)

ui(k) = σ∆

(
−vi(k) − α∇fi(xi(k))

−βωi

N∑
j=1

aij(xi(k) − xj(k))
)

, i ∈ V , (2b)

where α, β > 0 are gain parameters, and for a given positive scalar
∆ > 0, σ∆ : R → R is a saturation function with a saturation
level ∆, i.e., for s ∈ R, σ∆(s) = sgn(s)min{∆, |s|}. Note that we can
set the value of ∆ = umax so that the control input is bounded by
|ui| ≤ umax.

Next we present our main results whose proofs are given in the
appendix.

Lemma1. Consider themulti-agent system (1). Assume that Assump-
tions 1 and 2 are satisfied. Under the bounded distributed protocol (2),
the equilibrium point of the closed-loop system minimizes the global
objective function f (x) =

∑N
i=1fi(x).

In order to present the next result, we define A = diag{a1, a2,
. . . , aN}, where ai > 0 is the coefficient for the quadratic term of
the objective function fi(·) for agent i, and the matrix

M =
(
β(α − 1)L̃ + (IN − 2αA)

)2
+ αβ L̃ − IN . (3)

Theorem 1. Consider the multi-agent system (1). Assume that As-
sumptions 1 and 2 are satisfied. Then the bounded distributed protocol
(2) with α and β satisfying αβ < 1

λmax(L̃)
and M < 0, where λmax(L̃)

is the largest eigenvalue of the symmetric Laplacian matrix L̃, solves
the global optimal consensus problem, i.e., limk→∞xi(k) = x∗ for all
i ∈ V .

Remark 1. Note that the linear matrix inequality (LMI) M < 0 is
always solvable by properly choosing the gain parameters α and β .

Note that the proposed bounded distributed protocol (2) is a
proportional–integral controller. Let us now consider the following
simplified bounded distributed protocol involving only the integral
control action,

vi(k + 1) = vi(k) + αβωi

N∑
j=1

aij(xi(k) − xj(k)), vi(0) = 0, (4a)

ui(k) = σ∆

(
−vi(k) − α∇fi(xi(k))

)
. (4b)

We have the following result whose proof is omitted since it is
similar to that of Theorem 1.

Theorem 2. Consider the multi-agent system (1). Assume that As-
sumptions 1 and 2 are satisfied. Then the bounded distributed protocol
(4) with α and β satisfying αβ < 1

λmax(L̃)
and MI < 0, where

MI =
(
βαL̃ + (IN − 2αA)

)2
+ αβ L̃ − IN , solves the global optimal

consensus problem.

4. Conclusions

This paper considered the global optimal consensus problem
with bounded controls for a multi-agent system, where each agent
is a discrete-time single integrator and has a quadratic cost func-
tion that is only known to itself. We developed two bounded
distributed protocols and showed that the proposed distributed
protocols with properly chosen parameters solve the global opti-
mal consensus problem if the directed communication network is
strongly connected and detailed balanced.

Appendix A. Proof of Lemma 1

Let x(k) = [x1(k), . . . , xN (k)]T, v(k) = [v1(k), . . . , vN (k)]T, and
F (x) : RN

→ R, F (x) =
∑N

i=1fi(xi). From (1) and (2), we obtain the
following dynamics in a compact form,

x(k + 1) = x(k) + σ∆

(
−v(k) − α∇F (x(k)) − β L̃x(k)

)
,

v(k + 1) = v(k) + αβ L̃x(k), v(0) = 0, (A.1a)

where we have abused the notation by using σ∆ to also denote a
vector valued saturation function, i.e., for s = [s1, s2, . . . , sN ]

T
∈

RN , σ∆(s) =
[
σ∆(s1), σ∆(s2), . . . , σ∆(sN )

]T
∈ RN and ∇F (x) =[

∇f1(x1), ∇f2(x2), . . . ,∇fN (xN )
]T
.

Note that 1TL̃ = 0. Therefore, left multiplying (A.1a) by 1T gives
1Tv(k + 1) = 1Tv(k) + αβ1TL̃x(k) = 1Tv(k). This implies that the
term

∑N
i=1vi(k) remains unchanged with respect to time. Thus,

N∑
i

vi(k) =

N∑
i=1

vi(0) = 0, ∀k = 0, 1, . . . (A.2)

Let us denote the equilibrium point of the closed-loop multi-
agent system (A.1) as (xe, ve), where xe = [xe1, x

e
2, . . . , x

e
N ]

T and



Download English Version:

https://daneshyari.com/en/article/11003558

Download Persian Version:

https://daneshyari.com/article/11003558

Daneshyari.com

https://daneshyari.com/en/article/11003558
https://daneshyari.com/article/11003558
https://daneshyari.com

