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A B S T R A C T

Post-fault prediction of transient stability of power systems has a great impact on the performance of wide area
monitoring, protection and control systems. Situational awareness capabilities of a power system are improved
by fast detection of instabilities after severe fault occurrences. This allows sufficient time to take necessary
corrective control actions. In this paper, a novel method based on stacked sparse autoencoder is proposed to
predict the post-fault transient stability status of the power system directly after clearing the fault. A dataset is
generated off-line to train a stacked sparse autoencoder, and then the trained stacked sparse autoencoder is used
in an online application of predicting any transient instability. The stacked sparse autoencoder is fed by the
inputs, which are specific points extracted from the fault-on voltage magnitude measurements collected from the
phasor measurement units. The effectiveness of the proposed method is demonstrated and compared with the
conventional approaches that adopt multilayer perceptrons or post-fault measurements as it is applied to the
127-bus WSCC test system and to the Turkish power system.

1. Introduction

Power systems are exposed to various types of faults that might
cause instabilities or even blackouts. To prevent the loss of stability
after a severe fault, wide area monitoring, protection and control
(WAMPAC) systems are quite effective [1]. WAMPAC systems are de-
signed to increase the reliability and security of the power system by
improving its situational awareness capabilities. Phasor measurement
units (PMU) are now considered indispensable for achieving the si-
tuational awareness in power systems. WAMPAC systems use the PMUs’
measurements to counteract the propagation of severe faults [1]. Ac-
cording to the IEEE standard C37.118.1-2011 [2], the synchronized
measurements collected from the PMUs help the power system opera-
tors to build an accurate view of the entire power system in real-time.
PMU measurements are collected at a rate of 30–120 samples per
second, which enables WAMPAC system to capture the power system
dynamics and oscillations [3], and accordingly to apply a corrective
control action, when it is needed. WAMPAC system analyses the col-
lected PMUs’ measurements to detect the existence of a disturbance in
the system, and to specify its type and location [4,5]. In case of a fault,
the measurements can be used for determining whether the system will
remain stable or eventually become unstable as the system dynamics
evolve. Early prediction of the transient instability is crucial to allow

sufficient time for taking corrective control actions. This paper proposes
a novel method that utilizes PMU measurements to predict the transient
stability after the occurrence of a severe fault.

The problem of post-fault prediction of transient stability using wide
area measurements is addressed in many papers [6–23], and the ap-
proaches in them can be categorized as (a) time-domain simulations
[6,7], (b) Lyapunov exponent based methods [8,9], and (c) machine-
learning based classification techniques [10–23]. In the time-domain
simulation approach, a large number of differential-algebraic equations
(DAEs) are used to model the power system dynamics, and they are to
be solved faster than real-time. In Ref. [6], the measurements of PMUs
just after clearing the fault are used as the initial condition of the DAEs
to predict the future response of the system. In Ref. [7], implicitly de-
coupled PQ integration technique is used to build a fast DAEs model for
the post-fault dynamics. Although time-domain simulations are effec-
tive methods for stability prediction, they may suffer from impractic-
ability, since all the system parameters and information must be up-
dated periodically in real-time, which is a requirement that is hard to
accomplish. The method of maximal Lyapunov exponent (MLE) is an-
other way for predicting the transient instabilities in the power system
after the occurrence of a disturbance [8,9]. In these studies, a re-
lationship between transient stability and MLE is established. MLE is
calculated using the rotor angles over a time window of 1 s in Ref. [8],
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and up to 5 s in Ref. [9]. This approach assumes that the rotor angles
are available from the PMU measurements. Moreover, the time window
needed for calculating the MLE may not be short enough for triggering
fast corrective controls. Post-fault transient instability can also be pre-
dicted using machine learning based classification methods, e.g., arti-
ficial neural networks (ANN) [10–12], long short-term memory (LSTM)
[13,14], support vector machines (SVM) [15–18], core vector machines
(CVM) [19], decision trees (DT) [20,21], and extreme learning ma-
chines (ELM) [22,23]. Machine learning methods in these methods at-
tempt to capture the mapping relationship between the PMUs’ mea-
surements (input) and the corresponding transient stability status
(output). For enhancing the performance of the machine learning al-
gorithms, feature selection algorithms can be used, e.g., as in Ref. [18].
Feature selection algorithms are time consuming tasks and lack gen-
eralizability under certain circumstances [24]. As a novel approach in
this paper, a sparse autoencoder (SAE) is adopted for prediction. The
SAE can automatically extract features from a dataset and overcome the
shortcomings of the conventional machine learning tools.

The classification techniques above use the post-fault measurements
of PMUs to predict the power system stability after the occurrence of a
fault. However, the stability of the system not only depends on the post-
fault operating point, but also on the pre-fault operating point, the fault
location, and its duration [25]. Therefore, in this paper, a methodology
based on a stacked sparse autoencoder (SSAE) and softmax classifier is
proposed to achieve the classification task, as the measurements from
the whole fault-on time period are exploited. The fault-on time period
starts from the fault occurrence and lasts up to its clearance. A pre-
liminary study of utilizing the fault-on trajectory is carried out in Ref.
[26], where a multilayer perceptron is used to predict the post-fault
transient instabilities. This approach of utilizing the fault-on measure-
ments contrasts to the existing approaches in Refs. [10–23], in which
only the post-fault measurements are used. Using this method, the ac-
curacy of the SSAE in labelling the power system transient stability
status is greatly enhanced, as some specific points on the trajectories of
voltage magnitudes measured by PMUs are adopted as inputs to the
SSAE. The SSAE is trained off-line using the extracted voltage magni-
tude measurements, and then is used online for predicting the post-fault
stability directly after clearing the fault. The proposed method is able to
correctly predict the post-fault stability directly at the moment when
the fault is cleared, without waiting for further post-fault measurements
as in the existing approaches in literature [10–23]. The proposed
method is tested on two different power systems, the 127-bus, 37-
generator Western System Coordinating Council (WSCC) test system,
and the Turkish power system. The method’s efficiency is examined
through the assessment of its prediction accuracy in the training and the
test sets, which are obtained under different operating conditions of the
power system.

2. Stacked sparse autoencoder based classification

2.1. Deep learning

Deep learning is a breakthrough in the study of neural networks.
Deep learning networks are typically deeper than three layers to further
learn the essential high-level features of the low-level input data [27].
In each layer in a deep learning network, a different set of features is
extracted from the previous layer, resulting in extraction of more
complex features from the inputs. These discriminative high-level fea-
tures make the deep learning achieve more satisfying performance as
compared to the performance of the conventional neural networks. The
deep learning network is pre-trained via unsupervised learning, and
then fine-tuned in a supervised manner at the last layer for different
purposes, e.g. classification [27].

Deep learning networks have various types of architectures, e.g.
deep belief network (DBN), deep Boltzmann machine (DBM), con-
volutional neural network (CNN), and sparse autoencoder (SAE). In this

paper, a stacked SAE is adopted for classifying the transient stability
status of the power system after a fault.

2.2. Sparse autoencoder

Sparse autoencoder (SAE) is a feed-forward neural network that
attempts to learn an approximation to the identity function that is used
to reconstruct the given input x into a compressed representation in the
output y, by means of unsupervised learning [28]. SAE consists of two
parts: encoder and decoder. The encoder transforms the input vector

= …x x x x( , , , )d1 2 , x ∈ Rd, into a more abstract feature vector a ∈ Rh,
where d is the number of inputs and h is the number of hidden units.
Then, the decoder maps a to the output y ∈ Rd. The encoding and de-
coding stages can be represented as follows:

= +a W x bf ( )1 1 (1)

= +y W a bf ( )2 2 (2)

where f (·) is the activation function of the neurons, which is a non-
linear function, e.g. sigmoid function. W1 ∈ Rh×d is the matrix of
weights for the connections between the input layer (encoder) and the
hidden layer. W2 ∈ Rd×h is the matrix of weights for the connections
between the hidden layer and the output layer (decoder). b1 ∈ Rh×1 and
b2 ∈ Rd×1 are the bias vectors of the hidden and the output layers,
respectively.

The power of SAE lies in its reconstruction-oriented learning, which
enables it to recover the input x perfectly from a. This learning process
aims to bring the SAE’s output y as close as possible to the input x, by
means of optimizing the cost function [28] defined as
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The first term is the average sum-of-squares error, which is used to
describe the distinction between the input x and the output y. The
second term is the regularization term, or the weight decay term, which
is used to control the value of the weights to prevent the overfitting.
The last term is the sparsity penalty term, which is used to induce the
SAE to learn more features from the input by enforcing the constraint

=ρ ρî during the training, where ρ is the sparsity parameter, which is
typically close to 0, and ρ̂i is the average activation of the hidden
neuron i. λ and β are the weighting factors that are used to control the
impact of the weight decay and the sparsity penalty terms, respectively
[25]. KL ρ ρ( ˆ )i is the Kullback–Leibler divergence, which is used to
measure the difference between ρ and ρ̂i [28]. KL ρ ρ( ˆ )i is equal to zero
when the constraint =ρ ρî is satisfied. KL ρ ρ( ˆ )i is defined as
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SAE is trained using the back-propagation algorithm to minimize
the cost function J, which depends on the weights (W1 and W2) and the
biases (b1 and b2) [28]. First, the weights and biases are initialized as
small random values, and then an optimization algorithm is used to
minimize J. In this paper, the scaled conjugate gradient descent algo-
rithm is used to optimize the cost function J.

A stacked sparse autoencoder (SSAE) is a deep neural network that
is composed of an array of basic SAEs, where the decoder of each SAE is
connected to the encoder of the successive SAE, as shown in Fig. 1(a).
The structure of the SSAE enables it to extract extra features from the
inputs since each hidden layer can learn different features than the
previous layer does. The SSAE uses the same learning process as in SAE,
where back-propagation algorithm is used to update the weights and
biases of each layer by minimizing the cost function of the overall
network.
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