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a b s t r a c t 

The article presents a method to estimate multiple phases from a single moire fringe pattern in digital holographic 

interferometry. The proposed method relies on analysing the holographic moire signal using subspace rotational 

invariance approach and offers feasibility for single shot multi-component estimation without multiple frames or 

spatial carrier and high performance against severe noise. Simulation and experimental results demonstrate the 

applicability of the proposed method. 

1. Introduction 

Non-invasive multi-dimensional deformation analysis is an impor- 

tant but challenging problem in experimental mechanics and non- 

destructive testing where the reliable measurement of in-plane and out 

of plane components of displacement and strain of a deformed object 

is strongly desired. In this domain, digital holographic interferometry 

(DHI) [1] has emerged as a prominent measurement technique. For 

these measurements, a multi-wave setup is used where the test object 

is illuminated from different directions, and the interference between 

the multiple object and reference waves is recorded [2] . Consequently, 

the information about multi-dimensional displacement components is 

encoded in multiple interference phase maps, and reliable extraction of 

these phases carries great significance. Methods based on the applica- 

tion of multiple reference beams [3] and multiple wavelengths [4] have 

been proposed for multi-dimensional deformation measurements but the 

corresponding experimental design and setups are practically complex. 

The experimental complexity is simplified by the single reference wave 

and single wavelength based design in digital holographic moire [5] . 

Conventionally, phase retrieval from recorded interferogram is re- 

ferred to as fringe analysis [6] and several methods have been reported 

in literature [7–11] . For multi-component fringe analysis or retrieving 

information about the multiple phases in digital holography, spatial car- 

rier based approaches [2,5] have been applied where the contribution 

of individual components is separated in the frequency domain using 

a carrier followed by spectral filtering operation. However, the main 

limitation of these approaches is the requirement of careful carrier ad- 

dition and control. Phase shifting based methods [12,13] have also been 

reported but they require multiple frames to be captured which is prac- 
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tically tedious, error-prone and unsuitable for dynamic measurements. 

State-space approach [14] has also been proposed for these measure- 

ments but the performance is strongly coupled with precise choice of 

state initialization parameters and high noise-susceptibility. Recently , 

product high-order ambiguity function [15] and matrix enhancement 

[16–18] methods have been outlined but they have high computational 

cost due to the involvement of peak tracing and large matrix operations. 

In this work, we propose an elegant method for single shot multiple 

phase retrieval in digital holographic interferometry which exhibits high 

robustness against noise, eliminates the need for having multiple frames 

or careful carrier control, offers good computational efficiency without 

involving intensive peak search, enhanced matrices or precise initializa- 

tion. In addition, the inherent mathematical formulation in this method 

enables direct multiple phase derivative retrieval which is a significant 

requirement for measuring multi-dimensional components of strain of a 

deformed object. The outline of the paper is as follows. The theory of 

the proposed subspace processing method is presented in Section 2 . The 

simulation and experimental results are outlined in Section 3 . This is fol- 

lowed by discussions in Section 4 . Finally, the conclusions are presented 

in Section 5 . 

2. Theory 

In digital holographic interferometry, multiple interference phase 

maps can be efficiently encoded in a moire field [5] . The optical setup 

for recording moire signal relies on multi-wave illumination of the test 

object, which is shown in Fig. 1 . Mathematically, a dual component dig- 

ital holographic moire signal can be expressed as, 

𝚪𝑚 ( 𝑥, 𝑦 ) = 𝐴 1 ( 𝑥, 𝑦 ) 𝑒 𝑗𝜙1 ( 𝑥,𝑦 ) + 𝐴 2 ( 𝑥, 𝑦 ) 𝑒 𝑗𝜙2 ( 𝑥,𝑦 ) + 𝜂( 𝑥, 𝑦 ) (1) 
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Fig. 1. Schematic for multi-wave illumination. 

where A 1 and A 2 are the amplitude terms assumed to be slowly varying, 

𝜙1 and 𝜙2 are two interference phases, 𝑦 ∈ [0 , 𝑁 𝑦 − 1] and 𝑥 ∈ [0 , 𝑁 𝑥 − 1] 
are the pixels along vertical and horizontal dimensions, and 𝜂 is complex 

additive white Gaussian noise (AWGN). In the proposed method, we 

select a small symmetrical window or block around each pixel ( x, y ) 

such that the different phase distributions can be modelled as first-order 

polynomials within the given window. Hence, the windowed moire field 

can be described in matrix notation as, 

𝚪[ 𝑘, 𝑙] = 𝐴 1 [ 𝑘, 𝑙] 𝑒 𝑗𝜙1 [ 𝑘,𝑙] + 𝐴 2 [ 𝑘, 𝑙 ] 𝑒 𝑗𝜙2 [ 𝑘,𝑙] + 𝜂[ 𝑘, 𝑙 ] (2) 

where 𝜙1 ( 𝑘, 𝑙) = 𝑎 0 + 𝑎 1 𝑘 + 𝑎 2 𝑙 , 𝜙2 ( 𝑘, 𝑙 ) = 𝑏 0 + 𝑏 1 𝑘 + 𝑏 2 𝑙, and k and l now 

indicate the row and column indices such that 𝑘, 𝑙 ∈ [− 𝐿, 𝐿 ] where L is a 

parameter controlling size of the window. Note that by selecting a small 

block, the linear phase approximation is valid since the phases are as- 

sumed to have slow variations inside the given block. The coefficients 

[ a 1 , a 2 ] effectively represent the spatial frequencies or equivalently the 

phase derivatives along the two spatial coordinates for the first compo- 

nent, and [ b 1 , b 2 ] correspond to the spatial frequencies for the second 

component. The above signal can be further reduced as 

𝚪 = QAR + W (3) 

where 

Q = 

[ 
𝑒 𝑗(− 𝐿 ) 𝑎 1 𝑒 𝑗(− 𝐿 +1) 𝑎 1 ⋯ 𝑒 𝑗𝐿𝑎 1 

𝑒 𝑗(− 𝐿 ) 𝑏 1 𝑒 𝑗(− 𝐿 +1) 𝑏 1 ⋯ 𝑒 𝑗𝐿𝑏 1 

] 𝑇 

A = 

[ 
𝐴 1 𝑒 

𝑗𝑎 0 0 
0 𝐴 2 𝑒 

𝑗𝑏 0 

] 

R = 

[ 
𝑒 𝑗(− 𝐿 ) 𝑎 2 𝑒 𝑗(− 𝐿 +1) 𝑎 2 ⋯ 𝑒 𝑗𝐿𝑎 2 

𝑒 𝑗(− 𝐿 ) 𝑏 2 𝑒 𝑗(− 𝐿 +1) 𝑏 2 ⋯ 𝑒 𝑗𝐿𝑏 2 

] 
(4) 

and W represents complex AWGN. The superscript (.) T denotes trans- 

pose of a vector or a matrix. 

With 𝑀 = 2 𝐿 + 1 , we define two matrices such that, 

Q 1 = 

[
I 𝑀−1 0 𝑀−1 

]
Q 

Q 2 = 

[
0 𝑀−1 I 𝑀−1 

]
Q 

(5) 

where I 𝑀−1 is an identity matrix of order ( 𝑀 − 1) × ( 𝑀 − 1) and 0 𝑀−1 
is a zero column matrix of size ( 𝑀 − 1) . In Eq. 5 , the matrices Q 1 and 

Q 2 are created by truncating last row and first row of Q . Consequently, 

the matrices Q 1 and Q 2 are related as, 

Q 1 

[ 
𝑒 𝑗𝑎 1 0 
0 𝑒 𝑗𝑏 1 

] 
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝛀k 

= Q 2 (6) 

where 𝛀k is an unitary matrix. We can observe in Eq. 6 that the transfor- 

mation from Q 1 to Q 2 is rotational (phase change in complex domain) 

which is a consequence of translational invariance property [19] , which 

signifies the ability to select at least two subsets of the array that have 

same geometrical shape and size; in this case, one subset has all rows 

except the last row and the second subset has all rows except the first. 

Applying singular value decomposition (SVD) to 𝚪, we get 

𝚪( 𝑘, 𝑙) = USV = 

𝑝 = 𝑀−1 ∑
𝑝 =0 

𝑠 𝑝 u 𝑝 v 𝑝 (7) 

where 𝑀 = 2 𝐿 + 1 , S is a diagonal matrix with singular values sorted 

in descending order along the diagonal, U contains left singular vectors 

u 𝑝 and V 

𝐻 contains right singular vectors v 𝐻 

𝑝 along their columns, (.) H 

denotes conjugate transpose of a vector or a matrix. Here, the vectors u p 

represent columns of U with size M x1 and v p denote rows of V with size 

1x M . If the matrix 𝚪 contains P sinusoidal signals, then the first P singu- 

lar values and vectors represent signal subspace whereas the remaining 

singular values and vectors correspond to noise subspace, as shown in 

the following equation, 

𝚪 = U s S s V s + U n S n V n (8) 

where, 

U s = [ u 0 u 1 ⋯ u 𝑃−1 ] 

U n = [ u 𝑃 u 𝑃+1 ⋯ u 𝑀−1 ] 

V s = [ v 𝑇 0 v 𝑇 1 ⋯ v 𝑇 
𝑃−1 ] 

𝑇 

V n = [ v 𝑇 
𝑃 

v 𝑇 
𝑃+1 ⋯ v 𝑇 

𝑀−1 ] 
𝑇 

S s = 𝑑𝑖𝑎𝑔( 𝑠 0 , 𝑠 1 , ⋯ , 𝑠 𝑃−1 ) and 

S n = 𝑑𝑖𝑎𝑔( 𝑠 𝑃 , 𝑠 𝑃+1 , ⋯ , 𝑠 𝑀−1 ) 

The first singular value s 0 corresponds to the strongest signal component 

whereas 𝑠 𝑃−1 corresponds to the signal component with lowest ampli- 

tude. For our analysis, we assume A 1 > A 2 , and the amplitude discrim- 

ination is achieved between the components experimentally by placing 

a neutral density filter in the path of one of the object waves. In the ab- 

sence of noise, all singular values representing noise subspace become 

zero. Consequently, for the case of two signal components, comparing 

Eqs. (3) and (8) we can say that the matrices Q and U s have same column 

space whereas R and V s have same row space. Using these properties, 

the relation between Q and U s is given by, 

Q = U s T (9) 

where T is a non-singular matrix and U s = [ u 0 u 1 ] . Using Eqs. (9) and 

(6) , we get 

U s1 T 𝛀k = U s2 T (10) 

where, 

U s1 = 

[
I 𝑀−1 0 𝑀−1 

]
U s 

U s2 = 

[
0 𝑀−1 I 𝑀−1 

]
U s 

Substituting 𝚿k = T 𝛀k T 

−1 in Eq. (10) , we get, 

U s1 𝚿k = U s2 (11) 

Note that the matrices 𝚿k and 𝛀k are similar matrices and have same 

eigenvalues. Hence, solving for eigenvalues of matrix 𝚿k provides infor- 

mation about the spatial frequencies [19] . Note that Eq. (11) represents 

a system of over-determined linear equations which can be solved using 

least squares (LS) approach by applying pseudo-inverse operation, 

�̂�k = argmin 
𝚿k 

||U s1 𝚿k − U s2 ||2 = U 

+ 
s1 

U s2 (12) 

where ( . ) + denote Moore–Penrose pseudo-inverse operation. Further, in 

our analysis, the first component is the dominant or stronger one in 

terms of amplitude, and the first eigen value of �̂�k directly corresponds 

to the spatial frequency or equivalently the first order coefficient of the 

dominant component, which is estimated as, 

�̂� 1 = 𝑎𝑟𝑔( 𝜆𝑘 1 ) (13) 

where 𝜆k 1 is the first eigenvalue of �̂�k . 

Using the same analysis for V s , we get, 

�̂�l = argmin 
𝚿l 

||V s1 𝚿l − V s2 ||2 = V 

+ 
s1 

V s2 (14) 

where, 

V s1 = 

[
I 𝑀−1 0 𝑀−1 

]
V 

𝑇 
s 
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