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a b s t r a c t 

In this work, a 6th-order central-upwind weighted essentially non-oscillatory scheme is devised by ad- 

ditionally introducing a large stencil. The constrained condition of choosing this large stencil is that it 

should contain upwind information to raise the numerical stability of schemes. The implementation of 

scheme presented here is as compact as the classical weighted essentially non-oscillatory scheme. Several 

numerical examples show the robust and high-resolution performances of the scheme which is compa- 

rable with the recently developed 6th-order weighted essentially non-oscillatory scheme. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The distinguishing characteristic of nonlinear hyperbolic con- 

servation laws is that their solutions may contain discontinuities 

such as shock waves even for smooth initial conditions. Due to 

this characteristic, the high-order numerical methods constructed 

by traditional ways could generate spurious oscillations around the 

discontinuous regions. Thus, to cure these oscillations, some extra 

techniques are needed to devise the high-order numerical meth- 

ods. Several high-order numerical methods, e.g. essentially non- 

oscillatory schemes (ENO) [1,2] , weighted ENO schemes (WENO) 

[3,4] , discontinuous Galerkin finite element methods (DG FEM) 

[5,6] and so on, are capable of producing satisfactory numerical re- 

sults. 

The classical WENO schemes [4] , as a kind of the most popular 

schemes, have attracted a lot of attention due to the feature of easy 

implementation and high resolution. Several improvements have 

been developed to decrease the numerical dissipation of the classi- 

cal WENO schemes. One kind of improvement, e.g. [7,8] and so on, 

is to modify the weights and distribute a little more weights to the 

less smooth stencils. Another improvement, e.g. [9–13] , is to couple 

the low-dissipation scheme which is applied on the smooth region 

and the WENO scheme which is applied on the non-smooth region. 

Recently, based on the often used 5th-order WENO scheme, sev- 

eral 6th-order central-upwind WENO schemes [14–16] have been 
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developed by adding one more stencil. The idea to devise the 6th- 

order WENO originates from [14] in which the schemes are de- 

signed to maximize order of accuracy and bandwidth, and mean- 

while minimize dissipation. By including an additional downwind 

stencil, the overall central schemes WENO-SYMOO and WENO- 

SYMBO in [14] are constructed on the basis of optimal order of 

accuracy and optimal bandwidth efficiency, respectively. However, 

the order of WENO-SYMBO scheme degenerates even in smooth 

regions, and the WENO-SYMOO scheme introduces numerical in- 

stabilities near the contact surfaces even when only moderate dis- 

continuities are involved. In [15] , with the same stencils as [14] , 

the authors define the smoothness indicator of downwind stencil 

using all six grid values. To achieve the optimal order of accuracy, 

a reference smoothness indicator τ is devised which is similar to 

that first presented in [8] . In addition, it is found that this scheme 

needs extra artificial dissipation to maintain the numerical stabil- 

ity. 

In [16] , another 6th-order scheme is developed which is analo- 

gous with that in [15] but with different smoothness indicator for 

the newly-introduced downwind stencil and no additional artificial 

dissipation. We will choose this scheme as comparison since it is 

recently developed and easily implemented. In numerical simula- 

tions, it is found that this scheme cannot tolerate large CFL num- 

ber. That is, with large CFL number, the scheme generates visible 

oscillations around discontinuities. Instead of disappearing with in- 

creasing cell number, the oscillations show the apparent trend of 

growth. 
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To alleviate (or eliminate) the effect of large CFL number on the 

stability of scheme, we introduce a different stencil into the clas- 

sical 5th-order WENO scheme [4] . Since the introduction of down- 

wind stencil may lead to certain numerical instability especially for 

large CFL number, the stencil introduced should contain upwind 

information. Using the smoothness indicator consisted of all six 

grid values to measure the smoothness of the downwind stencil 

consisted of three grid values, as did in [14–16] , is rather abrupt. 

The smoothness indicator of newly-introduced stencil here is di- 

rectly measured by the formulation presented by Jiang and Shu in 

[4] . In general, to make the scheme arrive the 6th-order of accu- 

racy and each stencil contain upwind information, this new stencil 

needs to be larger than original stencils in theory. The nonlinear 

weights we get cannot satisfy the sufficient condition of retain- 

ing the optimal order, by Taylor analysis, and in fact only the 5th- 

order of accuracy can be obtained. But, this 5th-order scheme still 

has the smaller errors and higher resolution when compared with 

the classical 5th-order WENO scheme [4] . In order to cure the de- 

generation in accuracy, there are two reliable methods generally: 

embodying a mapping function [7,17,18] into the construction of 

weights or devising a reference smoothness indicator [8] . In ad- 

dition, the implementation of schemes presented here is compact 

like the schemes in [7] or [8] and no artificial parameter is used to 

control the resolution of solutions. 

The organization of this paper is as follows. In Section 2 , the 

recently developed 6th-order WENO scheme [16] is reviewed and 

we also investigate the numerical oscillations generated by this 

scheme under large CFL number. In Section 3 , we present the new 

6th-order WENO schemes. The mapping function in [18] is used in 

order to achieve the optimal accuracy. Also, as another way, a ref- 

erence smoothness indicator is also devised to recover the optimal 

accuracy. Finally, in Section 4 , several common examples are used 

to demonstrate the numerical performances of the new 6th-order 

WENO schemes. 

2. The 6th-order WENO-CU6 scheme 

2.1. Review the construction of the WENO-CU6 scheme 

In this section, we briefly review the recently developed 6th- 

order central-upwind WENO scheme [16] for solving hyperbolic 

systems of conservation laws 

u t + g(u ) x = 0 , a ≤ x ≤ b, t ≥ 0 , (1) 

where u = (u 1 , · · · , u m ) T and g(u ) = (g 1 (u ) , · · · g m (u )) T . We say the 

system (1) is hyperbolic if Jacobian matrix dg 
du 

has real and distinct 

eigenvalues, 

λ1 (u ) < λ2 (u ) < · · · < λm (u ) , 

for all values of u . First, the computational domain [ a, b ] is divided 

into N cells a = x 1 / 2 < x 3 / 2 < · · · < x N−1 / 2 < x N+1 / 2 = b. Denote the 

interval [ x i −1 / 2 , x i +1 / 2 ] by I i and the length of the cell I i by �x i . For 

simplicity, we will generally assume a uniform grid, but this is not 

required. 

Solving the conservation laws (1) with a conservative difference 

approximation to the spatial derivative 

du i (t) 

dt 
= − 1 

�x 

(
ˆ g i +1 / 2 − ˆ g i −1 / 2 

)
, (2) 

where u i ( t ) is the numerical approximation to the column vector 

u ( x i , t ). what to do in the next is how to compute the numerical 

flux ˆ g i ±1 / 2 properly. Following the procedure 2.10 in [19] , we use 

the way of characteristic-wise decomposition to project the rele- 

vant vectors u j and g ( u j ) into the local characteristic fields, where 

j is in a neighborhood of i . Denote by v j and f j the obtained vec- 

tors in the local characteristic fields. To avoid the presentation of 

entropy violating solutions, for the each component of character- 

istic variables, the simple scalar Lax–Friedrichs splitting is used to 

divide the each component f k 
j 

of f j into 

f k j = f k, + 
j 

+ f k, −
j 

, k = 1 , · · · , m (3) 

where the positive flux f k, + 
j 

= 

1 
2 ( f k 

j 
+ αk v k 

j 
) and negative flux 

f k, −
j 

= 

1 
2 ( f k 

j 
− αk v k 

j 
) . The scalar αk is taken as α = max 

1 ≤i ≤N 

∣∣λk (u i ) 
∣∣

over the global range of u . The WENO-CU6 reconstruction is used 

to computed each component ˆ f k, ±
i +1 / 2 

at x i +1 / 2 and then we obtain 

ˆ f k 
i +1 / 2 

= 

ˆ f k, + 
i +1 / 2 

+ 

ˆ f k, −
i +1 / 2 

. Finally, transforming the ˆ f i +1 / 2 in character- 

istic fields back to the physical space, we obtain the numerical 

flux ˆ g i +1 / 2 . In general, the difference between the different WENO 

schemes lies on the reconstruction of ˆ f k, ±
i +1 / 2 

. Here we only give the 

procedure of obtaining the positive numerical flux ˆ f k, + 
i +1 / 2 

, for ˆ f k, −
i +1 / 2 

a similar way can be used. For simplicity, we will omit the super- 

script k in 

ˆ f k, ±
i +1 / 2 

in the following procedure. 

In [16] , the positive numerical flux ˆ f + 
i +1 / 2 

can be achieved by 

the following three steps: 

1. Compute the smoothness indicators of four substen- 

cils S 0 = { I i −2 , I i −1 , I i } , S 1 = { I i −1 , I i , I i +1 } , S 2 = { I i , I i +1 , I i +2 } , S 3 = 

{ I i +1 , I i +2 , I i +3 } by 

βr = 

2 ∑ 

l=1 

∫ x i +1 / 2 

x i −1 / 2 

�x 2 l−1 (p (l) 
r (x )) 2 dx, r = 0 , 1 , 2 (4) 

and 

β3 = 

5 ∑ 

l=1 

∫ x i +1 / 2 

x i −1 / 2 

�x 2 l−1 (p (l) 
3 

(x )) 2 dx (5) 

where p r ( x ), r = 0 , 1 , 2 , are the 2nd-degree interpolation polynomi- 

als over the interval [ x i + r−5 / 2 , x i + r+1 / 2 ] and p 3 ( x ) is the 5th-degree 

interpolation polynomial over the whole interval [ x i −5 / 2 , x i +7 / 2 ] . 

2. Compute the nonlinear weights w r by the following formu- 

las 

w r = 

a r 

a 0 + a 1 + a 2 + a 3 
, a r = d r 

(
C + 

τ

βr + ε 

)
, 

τ = β3 − 1 

6 

( β0 + 4 β1 + β2 ) (6) 

and where d 0 = 1 / 20 , d 1 = 9 / 20 , d 2 = 9 / 20 and d 3 = 1 / 20 are the 

optimal weights and ε is a parameter used to avoid a division by 

zero in the denominator and set to be ε = 10 −40 in all numerical 

examples. 

3. Compute the convex combination of four substencils, 

ˆ f + 
i +1 / 2 

= w 0 ̂
 f + , 0 
i +1 / 2 

+ w 1 ̂
 f + , 1 
i +1 / 2 

+ w 2 ̂
 f + , 2 
i +1 / 2 

+ w 3 ̂
 f + , 3 
i +1 / 2 

(7) 

where ˆ f + ,r 
i +1 / 2 

are the 2nd-order numerical fluxes obtained on sten- 

cil S r . 

Substituting ˆ f + 
i +1 / 2 

and 

ˆ f −
i +1 / 2 

obtained by the above procedure 

into (3) , we can get the numerical flux ˆ f i +1 / 2 at the boundary of 

cell x i +1 / 2 . Similarly, we can get the numerical flux ˆ f i −1 / 2 at x i −1 / 2 

and finally form the scheme (2) . 

The discretization of the ODEs (2) in time obtained from spatial 

discretization using the methods of lines approach are solved by 

the third-order TVD Runge–Kutta method [20,21] 

u 

(1) = u 

n + �tL (u 

n ) , 

u 

(2) = 

3 

4 

u 

n + 

1 

4 

u 

(1) + 

1 

4 

�tL 
(
u 

(1) 
)
, 

u 

n +1 = 

1 

3 

u 

n + 

2 

3 

u 

(2) + 

2 

3 

�tL 
(
u 

(2) 
)
, (8) 

where L is the spatial discretization operator and u n is the solution 

at time t n . 
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