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a b s t r a c t 

Geometric filtration with Proper Orthogonal Decomposition has been demonstrated in the last decade, 

promising effective in reducing the design space dimensionality for several industrial shape optimization 

problems. Thanks to the capability of re-ordering the data according to decreasing variance, the Proper 

Orthogonal Decomposition (POD) extracts and filters the basic features of the dataset so as to formulate 

the optimization problem into a new, shrunk design space. The paper proposes and investigates the re- 

duction of the search hyperspace volume thanks to the application of POD to a set of design solutions 

in on-line optimization: in particular, the combination of a selection algorithm and the re-computation 

of the POD modes while the optimization is progressing is studied. A series of optimization results are 

shown for a two–dimensional test case by using a genetic algorithm. Both native geometry parameteriza- 

tion and the filtered one are used to highlight benefits and drawbacks of the proposed approach. Results 

show that, by employing the filtered parameterization and by properly/adaptively adjusting the bounds 

of the reduced design space, it is possible to achieve and even enhance the design performance attained 

with the native parameterization. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the framework of global optimization approaches for aerody- 

namic design, a shape is usually parameterized by acting on the 

design variables (DV) whose number and bounds generate the de- 

sign space. However, when increasing the geometry complexity of 

the problem at hand, the number of design variables may grow up 

significantly, giving rise to the well-known ‘curse of dimensional- 

ity’ [1] . 

This may hamper the success of the optimization process, as 

large design spaces may lead to multi-modal and noisy landscapes. 

As a consequence, the problem of searching for a global solution 

may result hard or even intractable, independently of the search 

method, i.e. deterministic or stochastic or meta–heuristic. 

In surrogate-based optimization (SBO), the meta–model that 

mimics the behavior of the objective function is made explicitly 

dependent on the design variables. From literature, it is known 

that, whatever the meta–model, a loss in prediction quality is asso- 

ciated to an increase of dimensionality [2] . On the other hand, sen- 
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sitivity analysis often shows that not all the design variables have 

the same influence on the objective function behavior. As a matter 

of fact, a reduction of the design space is envisaged to preserve the 

main features of the target function landscape while avoiding the 

high–dimensional noise. 

Another issue is related to the huge amount of CPU required 

to face with an industrial aerodynamic design. Indeed, geomet- 

ric complexities and non-linear flow features (e.g., flow separa- 

tion, shock waves, shock–boundary layer interaction) still require 

to use fine mesh size and large number of CFD iterations to be 

correctly solved. An even more crucial bottleneck is represented 

by the search of a solution with a global algorithm, which may re- 

quire a large number of CFD evaluations. Therefore, it is mandatory 

to reduce the problem complexity at each level of the design chain 

by means of the parallelization of the CFD solver, the usage of sur- 

rogate or reduced order models to evaluate the objective function 

and the reduction of the design space. 

In literature, design space reduction (DSR) is treated with dif- 

ferent strategies to shrink the bounds of the search volume like 

trust region approaches [3] , heuristic, move limits [4] , Variable- 

Complexity Response Surface Modeling Method (VCRSM), and Con- 

current Sub Space Optimization (CSSO) [5] . For example, VCRSM as 

proposed by Zahir [6] suggests a preliminary exploration of the de- 

sign space with a low fidelity model, then selects the new reduced 
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bounds with a pattern search coupled with high fidelity simula- 

tion and integration of data. CSSO is a subspace coordination pro- 

cedure: here the data generated by the subspace optimizers is not 

uniformly centered about the current design, but instead follows 

the descent path of the subspace optimizers [5,7] . The common 

feature of these techniques is the reduction of the search volume 

and the associated relieving effect, mostly if the optimization is 

driven by surrogate models. 

In another perspective, DSR can be viewed also as a reduc- 

tion of the inherent dimensionality of the problem, i.e. a tech- 

nique to identify a lower dimension that effectively and efficiently 

drives the problem at hand. The aim is to learn from a given sam- 

pling set of the original design space and to map it to a lower di- 

mensional space while keeping the most important features of the 

original design problem. Various strategies have been proposed in 

literature to seek an equivalent lower dimensional representation, 

even if some losses are introduced. Proper orthogonal decomposi- 

tion (POD), kernel POD, locally linear embedding, Laplacian eigen- 

maps, isomap and semidefinite embedding are just some examples 

[8–10] . 

In aerodynamics, Robinson and Kean [11] used Gram-Schmidt 

orthogonalization to define an airfoil parameterization with or- 

thonormal basis functions derived from a small database of super- 

critical airfoils. Successively, Toal et al. [12] introduced the geomet- 

ric filtration by means of POD in the context of aerodynamic shape 

optimization (ASO): the design variables set were filtered by per- 

forming a variance analysis based on Proper Orthogonal Decom- 

position. Exploiting the intrinsic properties of POD, the geometric 

data are re-arranged and ranked according to their relative im- 

portance, thus deriving a new parameterization in a transformed 

space. The beneficial aspect of this transformation is two–fold as 

it brings a quantitative and qualitative filtering at the same time: 

first, as a result of POD ranking and truncation, the new design 

space is shrunk and the effective size of the problem at hand is 

reduced (quantitative filtering); second, the new geometric modes 

are orthogonal and, hence, independent : this removes all possible 

spurious coupling between original design variables [12] (qualita- 

tive filtering). Poole [13,14] collects a database of airfoils and then 

filter them according to performance indexes and to the optimiza- 

tion problem. A geometric inverse problems was set to demon- 

strate the extent to which the reduced DVs are able to recover 

arbitrary airfoil shapes. In particular, he states that it is possible 

to represent a wide variety of airfoils geometries within a small 

tolerance also with eight reduced DV, furthermore he recommends 

that a wide range of airfoil shapes is essential to ensure an effi- 

cient coverage of the design space of a variety of sections. A ma- 

jor role is played by the sample density in that both minor sur- 

face and large topology changes can be captured effectively. Mas- 

ters et al. [15] compare seven different airfoil parameterizations 

and state that SVD methods give better results in terms of effi- 

cient coverage of design space in the reconstruction of 20 0 0 ge- 

ometries belonging to a large database. POD (or PCA) was also 

used in active subspace method (ASM) [16] to discover and ex- 

ploit low-dimensional and monotonic trends in the objective space 

as a function of the design variables. The method is based on the 

evaluation of the gradient. In the field of hydrodynamic optimiza- 

tion, Diez et al. [17,18] employed PCA to reduce the dimensionality 

of the problem, facing also with multiple design conditions. They 

add both physics–based lumped or distributed parameters in the 

design modification vectors. To obtain this parameter a prelimi- 

nary low-fidelity analysis is performed. In a recent work [19] , the 

authors compare linear PCA reduction technique, with non-linear 

technique like deep-autoencoder (DAE, a non-linear extension of 

PCA): here they showed the superior compression quality of DAE, 

with optimization results lightly better than PCA. Concerning the 

study of reduced variable bounds and how to set them, literature 

findings show that the upper and lower bounds of the new re- 

duced variables are often chosen as the minimum and maximum 

values of the POD coefficient vectors [12,17] . Li et al. [20] intro- 

duce a different strategy, where the first two modes coefficients 

are taken with min/max criterion, while the others are smoothed 

and scaled with a percentage (10%) of their variance. They set up 

a surrogate-based optimization approach employing a database of 

20 0 0 airfoils, a gradient-enhanced Kriging model (GE-KPLS) as sur- 

rogate and a gradient-based approach (SNOPT) as optimizer. A re- 

duced parameterization is introduced for mean line and camber 

distribution separately. Optimization results are relative to sub- 

sonic and transonic optimizations, comparing the outputs of SBO 

with ADflow, both in reduced Design Space. In this case a compar- 

ison with the native DS is not possible since they have deduced the 

reduced parameterization from an existing dataset of airfoil shapes. 

The present authors already proposed the application of the 

DSR technique to two- and three-dimensional surrogate-based 

optimization: in particular, in the first investigation [21] the 

optimization of an airfoil in subsonic viscous flow was studied; 

in the second [22] , the DSR was applied to an industrial case, i.e. 

a wing shape optimization in multi-point, transonic and viscous 

conditions. The last application represented quite a novelty with 

respect to recent papers [23–25] . In this perspective, the present 

paper represents a step inwards the full understanding of the po- 

tential and exploitation of the POD-based design space reduction 

method. Indeed, the paper deals with the study of the bounds 

of the reduced parameterization and, consequently, the effect of 

varying the design space volume within a shape optimization 

problem. A more pronounced emphasis is put on a twofold aspect: 

on one hand, the reduced design variables setting and adaptation 

during the optimization process, thus adjusting the reduced basis 

with the ongoing search results; on the other hand, addressing the 

low dimensional mapping in a more local sense, that is driving 

it to promising and narrow regions of the reduced design space. 

Both improvements are effective in confining the randomness 

and mitigating the dispersion of the initial geometry database, 

obtained through a pseudo–random Latin Hypercube Sampling. 

The paper is organized as follows: the next section will provide 

details about the DSR technique based on POD; afterwards, the 

optimization process and the POD basis updating strategy are 

presented; finally, a quite extensive section is devoted to the 

presentation of the results and to the critical discussion. 

2. Geometric data reduction by POD 

Proper Orthogonal Decomposition is a technique to compute a 

linear basis of vectors which is optimal in some sense. In other 

words, it provides the best representation of a given dataset in 

a different reference frame originated by the POD basis vectors. 

A detailed mathematical formulation for the derivation can be 

found in [26,27] . Here, the fundamental concepts and relations 

are recalled. The dataset is organized in a snapshot matrix S = 

{ S 1 , S 2 , . . . , S n } , which collects the available data in a column–wise 

manner, where n is the number of experiments or numerical sim- 

ulations. Here, it is assumed that each snapshot element S k is ob- 

tained by varying a set of parameters w = { w 1 , . . . , w m 

} which, in 

the present case, represent the design variables of the optimization 

problem at hand. The combination of the sets { w 1 , w 2 , . . . , w n } and 

{ S 1 , S 2 , . . . , S n } represent the so-called training dataset of database. 
Computing a POD basis consists in searching a set of orthonor- 

mal vectors φ1 , φ2 , . . . , φn such that the following relation holds: 

S j = S̄ + 

n ∑ 

i =1 

αi (w j ) φi = S̄ + 

ˆ n ∑ 

i =1 

αi (w j ) φi + ε j 

ˆ n 
= S̄ + 

ˆ n ∑ 

i =1 

(S j , φi ) φi + ε j 

ˆ n 

where S̄ is a base solution [27,28] (i.e. an average field), the scalars αi are 

the unknown POD coefficients, ˆ n ≤ n and the error ε is “optimal”, i.e. the 
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