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a b s t r a c t 

In this paper we study a monolithic Newton–Krylov solver with exact Jacobian for the solution of fully 

incompressible Fluid-Structure Interaction problems of either steady-state or time-dependent type. Un- 

like common approaches, the enforcement of the incompressibility conditions both for the fluid and for 

the solid parts is taken care of by using an inf-sup stable finite element pair, without stabilization terms. 

The Krylov solver is preconditioned using geometric multigrid with smoothers of Richardson type, in turn 

preconditioned by additive Schwarz algorithms. The separate solution of fluid or solid operators occurs 

only at the preconditioning stage of the smoother, thus guaranteeing at each level an accurate interface 

momentum balance. The definition of the subdomains in the Schwarz smoother is driven by the natural 

splitting between fluid and solid. For each part and level, the domain is subdivided into a number of min- 

imally overlapping subdomains. Numerical investigations of two and three-dimensional benchmark tests 

with Newtonian fluids and nonlinear hyperelastic solids are carried out by reporting several performance 

indices, including condition number estimates. A robust performance of the proposed fully incompress- 

ible solver is observed, especially for the more challenging direct-to-steady-state problems. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fluid-Structure Interaction (FSI) problems are of paramount in- 

terest because of a number of ubiquitous applications. To give 

an idea of such a breadth, we recall examples from aeroelastic- 

ity [8,44,58] , hydroelasticity [1,43,69] , biomechanics [30,39] , civil 

engineering [41,57,64] , acoustics [26] , and poroelasticity [23] . Sev- 

eral research groups at international level have dedicated their ef- 

forts to the study of Fluid-Structure Interactions in universities, re- 

search institutes as well as industries. From this interest many con- 

ferences and workshops have been organized in the last decades, 

journals have been established and books published [14,15,30,52] . 

Furthermore, software projects of both open-source and commer- 

cial type have been developed in order to perform numerical sim- 

ulations of FSI phenomena [7] . 

Given a certain physical model for the solid and fluid parts, 

many challenging questions are still nowadays open in the FSI 
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community, ranging from experimental investigations [31,36] to 

theoretical analysis [17,21,42] , from numerical approximation to 

computational issues. Fluid-Structure Interaction problems are 

characterized by an intrinsic mathematical challenge, due to the 

inherent nonlinearity given by a domain that moves as a func- 

tion of the unknowns. Several choices are possible in terms of 

the identification of the fluid and solid moving domains (inter- 

face tracking or capturing), the definition of the coupling algorithm 

between fluid and solid (monolithic vs. partitioned, loosely cou- 

pled vs. strongly coupled), the discretization procedure (decouple- 

then-discretize or vice versa), the order between the discretization 

and the linearization procedures (linearize-then-discretize or vice 

versa), the linearization scheme (fixed-point, relaxed fixed-point, 

quasi-Newton, Newton), the choice of the linear solvers and pre- 

conditioners. 

In this work we focus on the performance of geometric 

multigrid preconditioners combined with domain decomposition 

smoothers for monolithic Newton–Krylov solvers of fully incom- 

pressible FSI problems of either steady-state or time-dependent 

type. We intend to highlight the effectiveness of our algorithms 

in handling two kinds of numerical difficulties concerning FSI 

https://doi.org/10.1016/j.compfluid.2018.08.003 
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simulations: the enforcement of incompressibility (both for the 

fluid and for the solid part), and the computation of direct-to- 

steady-state solutions. We enforce pure incompressibility condi- 

tions both for the fluid and for the solid using inf-sup stable fi- 

nite element pairs, without introducing slightly-compressible sta- 

bilization terms. To the best of our knowledge, this is the first con- 

tribution in the literature on the study of this class of precondi- 

tioners for the case of full incompressibility both in the fluid and 

in the solid. Concerning steady-state solutions, our algorithms are 

able to perform direct-to-steady-state computations. This is an ad- 

vantage with respect to the more time-consuming practice of us- 

ing pseudo-time stepping schemes, in which the linear systems to 

be solved have a better conditioning and a stationary solution is 

reached as a limit of a time sequence. 

Multigrid and domain decomposition ideas draw a lot of at- 

tention within the FSI community, as a natural result of the 

interest emerged both in Computational Fluid Dynamics (CFD) 

[3,59,62] and Computational Solid Mechanics (CSM) [66] . Multi- 

grid algorithms are taken into account for the solution of large 

sparse linear systems due to their optimal computational complex- 

ity, which can be proven rigorously for model elliptic problems 

[13] . Typically, multigrid schemes are accelerated by outer Krylov 

iterations, with the intent to still obtain optimal or nearly optimal 

complexity schemes, or conversely they are seen as accelerators in 

the preconditioning stage of existing solvers. On the other hand, 

domain decomposition methods are very appealing since they al- 

low for the definition of separate subproblems for the solid and 

fluid parts as well as for an effective parallel implementation. In 

the realm of monolithic approaches, algorithms for FSI with multi- 

grid and/or domain decomposition techniques are studied in sev- 

eral works, such as [4,6,18,22,32,39,45,49,51,61,67,68] . Either geo- 

metric or algebraic multigrid schemes may be considered. Con- 

cerning geometric multigrid, the work that is closest to ours and 

that may be seen as a starting point for our contribution is [51] . 

Following this work, we also solve the coupled problem in a mono- 

lithic manner at each level and we perform partitioning between 

fluid and solid only at the smoothing level within the multigrid 

preconditioner. The idea of this approach is to invert smaller matri- 

ces with better condition numbers in the smoothing process. How- 

ever, in [51] the smoothing is partitioned but without using do- 

main decomposition algorithms of Schwarz type within the solid 

and fluid domains. Also, differently from our work, [51] makes 

use of pressure stabilization and the Arbitrary Lagrangian Eulerian 

(ALE) equation is simply taken as a harmonic operator. Ultimately, 

[51] only deals with time-dependent problems. It is also worth 

mentioning [39] , one of the first works on geometric multigrid 

for FSI. Here it was shown that a geometric multigrid solver with 

domain decomposition Vanka-like smoother of Multilevel Pressure 

Schur Complement (MPSC) type shows better convergence prop- 

erties with respect to Krylov solvers with ILU preconditioners. In 

[49,61] this multigrid solver has been placed as preconditioner to 

Krylov methods. A speedup of geometric multigrid can be achieved 

with GPU implementations [34] . Although in a partitioned scheme, 

a geometric multigrid strategy for the fluid part in a finite volume 

context has been defined in [55,56] , with appropriate modifica- 

tions for moving meshes. On the side of algebraic multigrid algo- 

rithms for monolithic FSI, we mention [22,32,45] . In [32] Newton–

Krylov solvers with AMG-based preconditioners are defined, where 

AMG is used either as approximate inverse to the separate field 

blocks in a block Gauss-Seidel preconditioner, or as a monolithic 

preconditioner with block Gauss–Seidel smoothing. Ad-hoc strate- 

gies are needed for AMG for the elasticity and the Navier–Stokes 

blocks. In [45] a block-triangular preconditioner for monolithic 

Newton–Krylov iterations is proposed. Suitable preconditioners are 

defined for the fluid Jacobian, the solid Jacobian and the pseudo- 

solid mapping. A spectral analysis is given along with computa- 

tional tests using AMG for the single blocks. A comparison of either 

algebraic multigrid or one-level additive Schwarz preconditioners 

(as studied in [6,67,68] ) is carried out in [22] . 

In order to deal with the several nonlinearities inherent to FSI 

problems (advection terms, transformations between moving and 

fixed domains, nonlinear constitutive relations), in this work we 

use an exact Newton method where we compute the exact Jaco- 

bian matrix with automatic differentiation tools provided by the 

Adept software package [38] . For the purposes of the implemen- 

tation, automatic differentiation is a very convenient tool that can 

be exploited with little code modification. Analytic expressions of 

the exact Jacobian may also be implemented using shape deriva- 

tive calculus [29,50] . In certain cases it may be more convenient, 

for simplicity or time performance, to consider the use of approx- 

imate Jacobians. In [39] quasi-Newton outer iterations with line 

search are performed and the Jacobian matrix is computed by a 

divided difference approach. A quasi-Newton method in which the 

variation of the fluid domain in the fluid equations is neglected is 

proposed in [9,10] . In [33] the authors propose a quasi-Newton al- 

gorithm based on a reduced model for Fluid-Structure Interaction 

problems. 

For the movement of the solid and fluid domains, we describe 

the solid motion in a Lagrangian way, while the fluid is observed 

in Eulerian fashion. We use the ALE approach, which is one of the 

most popular techniques in the FSI community [24,27,54,63] and 

it differs from other approaches such as the immersed boundary 

method [46] or the fully Eulerian approach [25] . A judicious def- 

inition of the ALE operator is needed in certain conditions in or- 

der to preserve the mesh quality. In this work we follow an ap- 

proach from [40] to define a convenient linear elastic operator. In 

our numerical experiments we observed that this approach is very 

robust at preserving the orientation of the mesh elements, or in 

other words it avoids mesh entanglement (see also [9] ). 

The paper is organized as follows. In Section 2 we present the 

strong and weak formulations of the time-dependent and station- 

ary incompressible FSI problems under investigation. A description 

of the Jacobian structure, the geometric multigrid preconditioner 

and the Richardson–Schwarz smoother is given in Section 3 . Nu- 

merical results of benchmark problems are presented in Section 4 . 

Finally, we draw our conclusions. 

2. Formulation of the incompressible FSI problem 

Here we describe the mathematical formulation of the FSI 

problem. We first define deformation mappings and displacement 

fields. Then, we describe the Fluid-Structure Interaction problem 

in terms of three subproblems with mutual coupling. For more de- 

tails, we refer the reader to [11,27,29,39] . 

2.1. Deformation mappings and displacement fields 

For every time t ∈ [0, T ], let � f 
t , �

s 
t ⊂ R 

n be open sets occupied 

only by a fluid or by a solid material, with boundaries ∂� f 
t and 

∂�s 
t on which outward unit normal fields n 

f and n 

s are given. In 

the following, any other symbol endowed with the superscripts f 

or s will refer either to the fluid or the solid part, respectively. We 

now define the open set �t := � f 
t ∪ �s 

t ∪ �i 
t , which is the current 

configuration of the overall physical domain, where �i 
t is the in- 

terface between fluid and solid. The fluid and solid are immiscible, 

namely � f 
t ∩ �s 

t = ∅ , and they interact through the nonempty in- 

terface �i 
t = ∂ � f 

t ∩ ∂ �s 
t . We define the parts of the boundary adja- 

cent only to the fluid or only to the solid as � f 
t and �s 

t , such that 

∂� f 
t = � f 

t ∪ �i 
t and ∂�s 

t = �s 
t ∪ �i 

t ( Fig. 1 ). 

For every domain D t ⊂ R 

n (which may change in time), we also 

define the cylinder Q D = { ( x , t) s.t. x ∈ D t , t ∈ [0 , T ] } . 
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