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A B S T R A C T

Even in the simple linear elastic range, the material behavior is not deterministic, but fluctuates randomly
around some expectation values. The knowledge about this characteristic is obviously trivial from an experi-
mentalist's point of view. However, it is not considered in the vast majority of material models in which “only”
deterministic behavior is taken into account.

One very promising approach to the inclusion of stochastic effects in modeling of materials is provided by the
so-called Chaos Polynomial Expansion. It has been used, for example, to derive the so-called stochastic finite
element method. This method yields results that are exactly of the desired kind, but unfortunately at increased
numerical costs.

This contribution aims to propose a new ansatz that is also based on a stochastic series expansion along with
an appropriate relaxation procedure at the Gauβ point level. Energy relaxation provides a synthesized (de-
terministic) stress measure, while simultaneously offering stochastic properties such as the variance. The total
procedure only needs negligibly more computation effort than a simple elastic calculation.

1. Introduction

Modern engineering aims to reduce the amount of materials to save
resources both during manufacturing and operation. However, this goal
also provokes a secondary effect: a shift of the stress state closer to the
limit state. This implies that buffers before tolerances are hurt become
smaller. On the other hand, all materials show a stochastic behavior,
which is caused, for example, by small deviations at the microscale.
This stochastic property can be described mathematically by para-
meters as the expectation value and the standard deviation. If the buffer
between tolerances and standard deviations now tends to become zero
or even negative, the sustainability cannot be adequately described by
material models that rely solely on the deterministic behavior.

This issue can be taken into account by employing different stra-
tegies, of which the Karhunen-Loève Expansion (Karhunen, 1947;
Loève, 1978) and the Chaos Polynomial Expansion (or Wiener Chaos
Expansion) (Wiener, 1938) are quite promising. The idea of a stochastic
expansion has been applied to various problems, including sensitivity
analysis (Crestaux et al., 2009), nonlinear random vibration (Li and
Ghanem, 1998) for the Chaos Polynomial expansion and the analysis of
human faces (Kirby and Sirovich, 1990), cosmology (Tegmark et al.,
1997), and selection and ordering (Fukunaga and Koontz, 1970) for the

Karhunen-Loève expansion, which shows the respective “universal”
applicability. The expansions have also been used in a context of
structural mechanics yielding to the famous stochastic finite element
method. For example, we refer to the works in (Deb et al., 2001;
Frauenfelder et al., 2005; Matthies and Keese, 2005; Dasgupta, 2008;
Matthies, 2008; Bieri and Schwab, 2009). Comparable approaches to
model reduction have been presented, e.g., by (Meyer and Matthies,
2003).

The two expansions are applied to both the input parameters, e.g.
the elastic constants, and the output parameters, e.g. the displacement
field. Whereas the stochastic coefficients of the input parameters can be
determined from experiments and calculated employing the covariance
matrix, the stochastic coefficients of the output parameters are un-
knowns that have to be found in addition to the expectation values. This
increased number of unknowns naturally increases the necessary
computational effort. More precisely, in the context of stochastic finite
elements, this means that the number of nodal unknowns is significantly
increased, which in turn increases the computation time drastically.

A different method is the stochastic perturbation method, cf.
(Kamiński and Kleiber, 2000; Sakata et al., 2008; Kamiński, 2013),
which is based on a (direct) Taylor series expansion of the stochastic
field variables. It has successfully been used also for highly non-linear
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problems, e.g. geometrically non-linear plasticity in (Kamiński, 2010).
Furthermore, it has been proven beneficial for the computation of ef-
fective elastic constants for materials with stochastic inclusions, see e.g.
(Kamiński and Kleiber, 2000; Sakata et al., 2008; Kamiński, 2013) or
(Gao et al., 2011) using a mixed perturbation Monte-Carlo method. This
strategy allows for a resolution of the topology of the inclusions at the
expense of a finite element treatment: the inclusion and the matrix
material in a representative volume element (RVE) are discretized by
finite elements and subjected to some average strain. Periodic boundary
conditions allow for the computation of the effective elastic constants at
the macroscale, which are determined by the stochastic interaction of
matrix and inclusion material at the (resolved) microscale. This general
procedure is adopted from the so-called FE2 method. Here, a RVE si-
mulation is performed for every single material (= integration) point,
which -once again- increases the numerical effort to a large degree.

In this work, we aim at contributing to the computation of the effective
material point behavior for microstructures with stochastic fluctuations by
using “ingredients”, which have been proposed both for the derivation of
the stochastic finite element method and the RVE treatment. However, we
do not apply any (stochastic) finite element or FE2 (RVE) method directly
but use relaxation strategies for the derivation of effective stochastic elastic
constants and the effective stochastic strain. These effective stochastic
quantities allow for the computation of the effective stochastic stresses. To
this end, we apply the very same idea of the stochastic expansion as used by
the stochastic finite elements. However, in contrast to the stochastic finite
element method, the stochastic degrees of freedom are not added to the
nodal quantities at the macroscale but to the material (= Gauβ) point
quantities at the microscale, i.e. strains and material parameters. From the
FE2 (RVE), we take the idea to consider some microstructure within a ma-
terial point and compute effective quantities. In our approach, we use this
idea in a much more “homogenized” way as in classical FE2 (RVE) strate-
gies. Therefore, one drawback of our approach is that at the present stage,
we need to neglect any spatial information. To be more precise, the gradient
interactions between stochastic distributions at different Gauβ points as well
as the spatial distribution of random elastic constants within the material
point cannot be taken directly into account. On the other hand, we obtain
explicit formulas for the expectation and standard deviation of the stress,
with only marginally increased computation times as compared to the
purely deterministic elastic simulation. The stochastic expansion can also be
applied for very general probability distribution functions of the elastic
properties, for example, we do not need to assume the fluctuations to be
Gaussian. Finally, there is no need to compute eigenvalue expansions of the
random fields – our results are formulated in terms of stochastic moments of
the original material properties, which may be estimated experimentally. In
other words, no stochastic expansion is present in the final formulas.

We begin with the physical modeling concept, which sets the fun-
damental mathematical problem. Subsequently, a small review of the
Karhunen-Loève expansion is presented. For convenience, we also give
a brief review on the stochastic finite element method, which eases a
later comparison between our new method and the established one. We
also discuss how to model the effective stochastic behavior of a material
point. This procedure enables the investigation of the stochastic beha-
vior of the effective elastic constants, the effective strains, and the ef-
fective stress. For convenience, we collect all final results in one section.
Before we conclude, we also present first numerical results.

2. The stochastic material point behavior

There exists various ways for modeling the stochastic material be-
havior, e.g., the stochastic finite element method. However, as will be
shown in Section 4, application of the stochastic finite element method
increases numerical costs by a remarkable degree. The same argument
of highly increased numerical effort is true for other modern upscaling
methods as, e.g. the so-called FE2 method, which solves a finite element
problem at the microscale providing the average quantities as stress and
stiffness within a representative volume element (RVE) for the finite

element procedure at the macroscale. This procedure has been proven
to be very powerful to account for microstructural properties that in-
fluence the macroscopic behavior of the construction part. An im-
portant aspect is how to construct RVEs such that they are statistically
representative if stochastic effects play an important role at the mi-
croscale, see e.g. (Ostoja-Starzewski, 2006; Soize, 2008). An application
of the stochastic finite element method in the context of the FE2 method
would also be possible in general but at numerical costs that can hardly
be invested. In (Sakata et al., 2008; Gao et al., 2011), a stochastic
homogenization was performed using the perturbation method and
Monte-Carlo approaches at a scale which corresponds to the lower scale
in a FE2 setting: precise assumptions on the geometry at this low scale
and employing periodic boundary conditions result in effective elastic
constants. This approach, however, would have to be performed at each
integration point in a complete FE2 treatment.

For a new point of view, which synthesizes both worlds and also
improves the numerical performance, we propose a novel strategy that
relies on the stochastic expansions, as also the stochastic finite ele-
ments, and homogenization strategies, as also the FE2 (RVE) treatment,
and thus provides an effective material point result for the stochastic
elastic constants, stochastic strains, and stochastic stresses. Compared
to the stochastic finite element method, our approach operates at a
different level, precisely on the material point level or equivalently on
the Gauβ point level (= integration point level). In contrast to finite
element-based homogenization methods as in (Kamiński and Kleiber,
2000; Sakata et al., 2008), we present analytical formulas for the ef-
fective, stochastic stress, which, of course, do not account for geome-
trical aspects as it would be possible for the approach in (Kamiński and
Kleiber, 2000; Sakata et al., 2008; Gao et al., 2011). On the other hand,
our modeling does not modify the finite element method at the mac-
roscopic level and thus increases numerical efforts only to a very lim-
ited extent.

For the purpose of shifting the evaluation of the stochastic material
behavior from the displacement field (operating at the nodes) to the ma-
terial point level (operating at the Gauβ point level), the material point has
to be equipped with an additional “degree of freedom” that takes account of
the stochastic information. In a comparable way to the stochastic finite
element method, each material point has to be enabled to display the sto-
chastic material behavior at a “spatial” level. We thus divide each material
point into n domains for which we assume a uniform distribution that yields

n1/ as the volume fraction of each domain in the respective material point.
For metallic materials, these domains may be identified, e.g., as the crys-
tallographic grains. The “microscale” of the material point is described in
terms of the microscale “spatial” coordinate χ (whereas x denotes the
spatial coordinate at the macroscale). A schematic plot is given in Fig. 1 for
a one-dimensional domain space, for simplicity, but the results are not re-
stricted to this case. A geometrical resolution of χwould be provided by the
FE2 (RVE) treatment, as performed, e.g. in (Sakata et al., 2008), such that
our approach might be interpreted as an "emulated" RVE. After this “spatial”
discretization by means of χ, we apply some (energetic) relaxation ap-
proach yielding the effective material point quantities, as it has also be used
for upscaling in a FE2 (RVE) setting.

Each domain is indicated by the index i and thus serves as spatial
discretization of the microscale within the material point. This increase
in the degrees of freedom allows for a stochastic material behavior in
each domain. For now, we restrict ourselves to the linear-elastic case,
implying that the elastic constants are the only material parameters
entering the model. They can be expanded by employing a stochastic
expansion as
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see also (14). This series expansion is adopted from the stochastic finite
element method. Complete details and mathematical foundations are
presented in Section 3 while the modeling idea is outlined in this
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