## **Accepted Manuscript**

Experimental and numerical investigation of the fracture toughness of Glass/ Vinylester composite laminates

F. Alizadeh, C. Guedes Soares

PII: S0997-7538(18)30404-2

DOI: 10.1016/j.euromechsol.2018.08.003

Reference: EJMSOL 3648

To appear in: European Journal of Mechanics / A Solids

Received Date: 30 May 2018

Revised Date: 10 August 2018

Accepted Date: 21 August 2018

Please cite this article as: Alizadeh, F., Guedes Soares, C., Experimental and numerical investigation of the fracture toughness of Glass/Vinylester composite laminates, *European Journal of Mechanics / A Solids* (2018), doi: 10.1016/j.euromechsol.2018.08.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



## CCEPTED MANUSCRIPT

**Experimental and numerical investigation of the fracture** toughness of Glass/Vinylester composite laminates

F. Alizadeh, C. Guedes Soares\*

Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

\*Corresponding author e-mail address: c.guedes.soares@centec.tecnico.ulisboa.pt

**ABSTRACT** 

Mixed-mode interlaminar fracture behaviour of Glass/Vinylester composite laminate has been

investigated numerically and experimentally. In the current study, fracture parameters of this

type of material have been obtained in pure mode-I, pure mode-II and mixed-mode loading

conditions. For this purpose, the butterfly Arcan specimens were produced with various lengths

of delamination as pre-cracks and were tested in various loading conditions. The experiments

were conducted using an Arcan fixture to obtain the critical load. The geometrical correction

factors have been calculated using finite elements. Finally, the fracture toughness and critical

energy release rate has been determined by experimental and numerical results.

**Keywords**: Fracture mechanics; Arcan; Mixed-mode; composites; VCCT

1

## Download English Version:

## https://daneshyari.com/en/article/11003882

Download Persian Version:

https://daneshyari.com/article/11003882

<u>Daneshyari.com</u>