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A B S T R A C T

In this paper, we present a theoretical model that solves the problem of minimization of aerial ropeway vehicle
oscillations that are induced as the vehicle passes over a support. The task is formulated as an inverse problem,
where the vehicle oscillations are minimized by an appropriate choice of the velocity profile of the hauling cable.
We study two general cases numerically, a single vehicle system (FUNIFOR), as well as a classical aerial ropeway
with two vehicles. In both cases we find optimal velocity profiles that show a considerable improvement of the
oscillatory behavior of the vehicles as compared to constant velocity profiles and optimal profiles that have been
obtained analytically by loosening some of the constraints for the system. In addition to a minimization of the
vehicle oscillations, we also optimize the time that elapses as the vehicle is hauled through the system. We
believe that this exploratory study lays a sound basis for various possible future studies and practical applica-
tions (Computer Aided Engineering).

1. Introduction

Optimization of physical processes or mechanical systems is an ac-
tive and broad field of research, ranging from nano–structured systems
to large constructions like buildings or cable rope ways (Wenin et al.,
2010; Thaler et al., 2016; Banichuk et al., 2013). In this paper we apply
numerical minimization methods to optimize the oscillatory behavior of
cable ropeway vehicles induced by the vehicle passing over a support.
Since the vehicles of state–of–the–art ropeways travel at speeds of up to
15m/s, the minimization of vehicle oscillations induced by large de-
flection angles in the support geometry are an important and essential
task. In this study we use the time–dependent velocity profile of the
vehicle as a free variable to design an optimal support crossing with
minimal induced vehicle oscillations (real world cable car systems use
time-dependent velocity profiles for the hauling cable to control vehicle
oscillations). We consider two cases, a single vehicle, as well as two
vehicles coupled through a hauling cable with a common velocity.
The computation of the ”exact” dynamics of a vehicle is a compli-

cated task, since a coupled system of the time–dependently driven
hauling cable, the support cable, the hauling cable suspensions on the
support cable, the counterweight and one or two vehicles, as well as
several damping devices have to be taken into account (Brownjohn,
1998; Bryja and Knawa, 2011; Knawa and Bryja, 2014; Sofi, 2013; Yi

et al., 2017). Wind induced cable- and vehicle oscillations were the
subject of various studies, where the wind forces were introduced
through a source term in the equations of motion (Kopanakis, 2010;
Zhou et al., 2011; Engel and Löscher, 2003; Volmer, 1999; Kang et al.,
2013; Hoffmann, 2009). Those studies were formulated as direct pro-
blems, that is, the calculation and simulation of the response of a system
for given system parameters that have been evolved through dynamical
equations.
In this investigation we consider inverse problems: given the dy-

namical equations, we try to determine optimal system parameters that
minimize the vehicle oscillations, while making the run–time as short as
possible. The optimization is performed numerically by using the fra-
meworks Mathematica and Matlab (Matlab homepage; Mathematica
homepage).
Our model captures the full dynamics of the vehicles, modeled as

damped physical pendulums, but neglects the dynamics of the hauling
cable, which will be included in a future study. Consequently, the ob-
tained optimal velocity profiles correspond to the velocity at the sus-
pension point of the vehicle (running gear), which, in this simplified
case, is equal to the velocity of the hauling cable along the cir-
cumference of the driving disk, since the hauling cable is assumed to be
rigid.
Furthermore, we assume a simplified time–independent trajectory
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of the vehicle suspension point, that is, we neglect the back–action of
the vehicle's motions on the dynamics of the support cable. Accounting
for this additional factor would lead to complicated systems of non-
linear equations (Brownjohn, 1998; Bryja and Knawa, 2011; Knawa and
Bryja, 2014) which lie beyond the scope of this first optimization study.
In our approach, we use a set of ordinary differential equations, which
can be integrated numerically in a fast, stable and straightforward
fashion. In order to use standard global and local optimization strate-
gies we defined a cost function J, which penalizes vehicle oscillations
and rewards short run–times. The innovative aspect of our study is, that
we provide a novel numerical optimization framework to minimize
vehicle oscillations. While the base model presented here assumes a
simple support head geometry and neglects the dynamics of the hauling
cable, our approach is general enough to accommodate arbitrary geo-
metries for the support head. Including the dynamics of the hauling
cable can be achieved by solving for the modified velocity profile of the
suspension point for a given velocity profile of the driving disk and by
providing a model for the elasticity of the hauling cable. Another ad-
vantage of our framework is, that it expresses all quantities (vehicle
deviation angles, velocities) in terms of positions, which makes it ac-
cessible to experimental observations, which are usually measured with
respect to positions.
Our paper is organized as follows: Sect. II contains the geometric

description of the vehicle paths in space. In Sect. III, we set up the
equations of motion of the system. Sect. IV is devoted to the definition
of a suitable cost function with appropriate constraints. In Sect. V, we
summarize the numerical procedure and evaluate its performance by
comparing against results obtained from employing a complementary
optimization strategy. We then apply our numerical framework to one-
and two vehicle systems. Finally, in Sect. VI, we conclude and point out
directions for future research.

2. Geometric description

To describe the path of a pendulum in a vertical plane we introduce
the arc length s s[0, ]max as the curve parameter and denote the
Cartesian coordinates of the trajectory in the plane as

=U s X s Y s( ) ( ( ), ( )). The actual path can be calculated approximately
using the standard model of a quasi–static moving point load on an
ideal linear elastic cable, where the role of the hauling cable, as well as
different possible boundary conditions and temperature effects are ac-
counted for (Czitary, 1962; Rope dokumentation; CEN-Norm, 2009;
Liedl, 1999). For a vehicle moving within a span away from a support,
the trajectory can be approximated by a parabola. Closer to the support,
as well as on the support, other curves are suitable. The support head
itself consists of several circular arcs with different radii.

2.1. Simplified trajectories

In this work we use, as a first approximation, a simplified trajectory
for the vehicle moving over a support, consisting of two straight lines
and a circular arc. An extension of the model to more accurate paths is
straightforward and lies beyond the focus of this investigation.
Additionally, we assume a rigid behavior of the hauling cable, such that
the velocities of both vehicles are equal in magnitude for all times. This
approximation is well justified (a detailed investigation of the hauling
cable dynamics requires quite some effort. For a study with moving
weightless strings see (Banichuk et al., 2013; Andrianov and
Awrejcewicz, 2006)).
The parametrization of the path for the vehicle is (see Fig. 1):
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Here = +s s r ( )f i is the length of the support head and r the
radius of the arc respectively. We assume +, which means the
support is not a hold–down clamp. In the two vehicle case, the para-
meters differ in general, ± ±

(1,2), r r (1,2); smax is equal for both
vehicles (see Fig. 2). Using Eq. (1), several practical relevant problems
can be formulated and solved by adjustment of the different para-
meters, e.g. two vehicles which pass the same support in the same time
interval, or one vehicle which passes over a support and the other
moves within a span, etc. Note that at the transition points =s si f, the
path curvature is discontinuous. This leads to discontinuities in the
centrifugal acceleration of the vehicles, which can be cured if the
support geometry is modeled through clothoids.

3. Equation of motion

Considering an ordinary pendulum, where the suspension point
coordinates are time–dependent and located at
X t Y t X s t Y s t( ( ), ( )) ( ( ( )), ( ( )))P P , the equation of motion for the angle
(the derivation using a suitable Lagrangian is straightforward (Landau
and Lifschitz, 2011)) t( ) is given by,

Fig. 1. Sketch of the model: the suspension point P of the physical pendulum
moves with velocity v along the trajectory parametrized by the arc length s. The
complete trajectory consists of three paths labeled by f s( )1,2,3 , where si f, denotes
the initial/final points of the support structure. The velocity v is time (position)
dependent and our design variable. The deflection angle φ is a dependent
variable; ψ is the angle of the running gear respect to the horizontal (the axes
are shown for orientation).

Fig. 2. Two vehicles moving along different paths; due to the coupling through
the hauling cable, both vehicles have the same velocity at each instant of time.
They cover the same distance smax .
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