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a b s t r a c t

In this work, the one-shot method previously developed for the solution of limit cycle
oscillation problems is extended to predict flutter boundaries of aeroelastic systems. In
essence, the one-shot method determines the aeroelastic response of wings and airfoils in
a tightly-coupled fashion where both aerodynamic and structural dynamic problems are
solved simultaneously using harmonic balance. This approach is superior to the frequency-
based techniques previously reported in the literature such that it eliminates the need
to sweep over a range of frequencies to determine flutter conditions. For each Mach
number of interest, the values of flutter frequency and flutter velocity are determined as
part of a single aeroelastic run. A method for identifying appropriate initial conditions is
also presented. It is shown that the flutter onset point for given flow conditions can be
accurately identified by prescribing a very small pitch amplitude treating flutter prediction
as a response problem instead of the classical stability problem. Using this technique, three
two-degree-of-freedom aeroelastic models, including a flat plate, the NACA 64A010 airfoil
and the supercritical NLR 7301 airfoil, are studied under different flow conditions ranging
from low-speed, inviscid flow to transonic, viscous, turbulent flow. The results are verified
against reference results from the literature. In addition, two other established flutter
methods are implemented in this work for verification purposes, and the efficiency and
robustness of the one-shot method are investigated.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate prediction of flutter boundaries for air vehicles is crucial to ensure the safety of flight operations. In practice,
flutter prediction methods can be broadly classified in three categories regardless of the specific type of techniques used to
model the fluid and the structural fields. The first category is based on the physical property of flutter onset phenomenon.
Methods that fall in this category continuously sweep over possible flutter conditions (such as the frequency and the
freestream velocity) using an aeroelastic solver, and observe how oscillations evolve following an initial disturbance.
The flutter point is obtained when the oscillation sustains its amplitude, i.e., when the total damping of the system
vanishes (Geuzaine et al., 2003; Woodgate et al., 2005; McNamara and Friedmann, 2007; Kachra and Nadarajah, 2008;
Mundis and Mavriplis, 2013) or when the excitation force required to sustain the oscillation becomes zero (Fung, 1969).
Note that this type of flutter prediction needs multiple runs of the aeroelastic solver in order to bracket a single flutter onset
point which may be computationally expensive.
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Nomenclature

b, c Half-chord and chord length, respectively
Cl, Cm Lift coefficient and moment coefficient about the elastic axis, respectively
Cp Pressure coefficient, Cp = (p − p∞)/q∞

E, E−1 Discrete Fourier and inverse Fourier transformation matrices, respectively
e Position of elastic axis behind leading edge in unit of chord length c
F , G Flux vectors in x and y directions, respectively
F Assembly of flutter governing equations
fi Flutter index, fi = 2Ṽf /

√
µ

f Vector of aerodynamic forces
H Total enthalpy
h Enthalpy or plunge displacement
Iα Second moment of inertia of airfoil about the elastic axis
Kh Plunge stiffness of airfoil
Kα Torsional stiffness of airfoil about the elastic axis
K , M, T Stiffness, mass and damping matrices, respectively
m Mass of aeroelastic model
M∞ Free-stream Mach number
N Number of harmonics
p, p∞ Local and free-stream pressure
Q Conservation variables of fluid equation
Q̂Cn , Q̂Sn Fourier coefficients of conservation variables
q∞ Free-stream dynamic pressure, q∞ = ρ∞U2

∞
/2

rα Radius of gyration of airfoil about the elastic axis, r2α = Iα/(mb2)
Re∞ Free stream Reynolds number
Rf , Rs Residuals of fluid and structure governing equations, respectively
S Source vector of fluid equation
Sα First moment of inertia of airfoil about the elastic axis
Th, Tα Plunge and torsional damping of airfoil, respectively
St Source term for the Spalart Allmaras turbulence model
S Source vector of fluid equation
t Physical time
u, v Cartesian velocity components
U∞ Free-stream velocity
Ṽ Reduced velocity, Ṽ = U∞/(ωαc)
x, y Cartesian coordinates
xα Airfoil static unbalance, xα = Sα/(mb)
Z Figure-of-merit for reduced frequency and reduced velocity search
α Pitch displacement
γ Ratio of specific heats
ζh Plunge coordinate damping coefficient, ζh = Th/(2mωh)
ζα Pitch coordinate damping coefficient, ζα = Tα/(2Iαωα)
η Vector of dependent structure variables
µ Mass ratio, µ = m/(πρ∞b2)
µl, µt Laminar and eddy viscosities, respectively
ν̃ Working variable of the turbulence model
ρ∞ Free-stream density
τf , τs Pseudo-time for fluid and structure solvers, respectively
φα, φh Phase of pitching and plunging oscillations, respectively
ω Frequency
ω̃ Reduced frequency based on airfoil chord length, ω̃ = ωc/U∞

ωα, ωh Uncoupled natural frequencies of pitching and plunging about the elastic axis

Superscripts and accents

∗ Variable in sub-time levels
ˆ Fourier coefficients
· Dimensional time derivative
′ Non-dimensional time derivative
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