Accepted Manuscript

Title: Friction Stir Processing of AlSi10Mg parts produced by Selective Laser Melting

Authors: Ahmed H. Maamoun, Stephen C. Veldhuis,

Mohamed Elbestawi

PII: S0924-0136(18)30372-8

DOI: https://doi.org/10.1016/j.jmatprotec.2018.08.030

Reference: PROTEC 15895

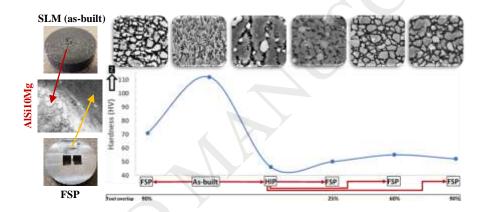
To appear in: Journal of Materials Processing Technology

Received date: 28-3-2018 Revised date: 8-8-2018 Accepted date: 21-8-2018

Please cite this article as: Maamoun AH, Veldhuis SC, Elbestawi M, Friction Stir Processing of AlSi10Mg parts produced by Selective Laser Melting, *Journal of Materials Processing Tech.* (2018), https://doi.org/10.1016/j.jmatprotec.2018.08.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT


Friction Stir Processing of AlSi10Mg parts produced by Selective Laser Melting

Ahmed H. Maamoun*¹, Stephen C. Veldhuis ¹, Mohamed Elbestawi ¹

¹⁾McMaster University, 1280 Main Street West Hamilton, ON, Canada, L8S 4L7

* Corresponding author contact: maamouna@mcmaster.ca; elbestaw@mcmaster.ca

Graphical abstract

Abstract

The additive manufacturing (AM) of aluminum alloys promises a performance enhancement of lightweight parts produced using Selective Laser Melting (SLM). Post-processing for AM parts produced using SLM is often an essential step homogenizing their microstructure and reducing as-built defects. In this study, friction stir processing (FSP) was used as a localized treatment on a large surface area of AlSi10Mg parts using multiple FSP tool passes. The influence of FSP on the microstructure, hardness, and residual stresses of both as-built and hot isostatic pressed (HIPed) parts were investigated. FSP transforms the microstructure of parts into an equiaxed grain structure. Microstructure homogenization was achieved consistently over the processed

Download English Version:

https://daneshyari.com/en/article/11004026

Download Persian Version:

https://daneshyari.com/article/11004026

<u>Daneshyari.com</u>