
Probabilistic Engineering Mechanics 53 (2018) 143–153

Contents lists available at ScienceDirect

Probabilistic Engineering Mechanics

journal homepage: www.elsevier.com/locate/probengmech

Probabilistic assessment of performance under uncertain information using
a generalized maximum entropy principle
Alice Cicirello a,*, Robin S. Langley b

a Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
b Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

a r t i c l e i n f o

Keywords:
Maximum entropy
Uncertain probability density function
Inequality constraints on statistical moments
Bounds on failure probability
Bounds on performance metric

a b s t r a c t

When information about a distribution consists of statistical moments only, a self-consistent approach to deriving
a subjective probability density function (pdf) is Maximum Entropy. Nonetheless, the available information may
have uncertainty, and statistical moments maybe known only to lie in a certain domain. If Maximum Entropy
is used to find the distribution with the largest entropy whose statistical moments lie within the domain, the
information at only a single point in the domain would be used and other information would be discarded. In
this paper, the bounded information on statistical moments is used to construct a family of Maximum Entropy
distributions, leading to an uncertain probability function. This uncertainty description enables the investigation
of how the uncertainty in the probabilistic assignment affects the predicted performance of an engineering
system with respect to safety, quality and design constraints. It is shown that the pdf which maximizes (or
equivalently minimizes) an engineering metric is potentially different from the pdf which maximizes the entropy.
The feasibility of the proposed uncertainty model is shown through its application to: (i) fatigue failure analysis
of a structural joint; (ii) evaluation of the probability that a response variable of an engineering system exceeds
a critical level, and (iii) random vibration.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering, several parameters of a computational model (such
as geometry, material properties, loadings, boundary conditions, and
structural joints) used to investigate the behaviour of a system may
not be known precisely, and yet an engineering assessment of a design
must nonetheless be performed. These uncertainties can be modelled
in a parametric [1,2] or non-parametric way [2–5], or a combination
of both [6–9]. While parametric approaches consider specific physical
properties of the system to be uncertain, the non-parametric approaches
account for the uncertainty effects at a higher level. Parametric un-
certainty models can be probabilistic [1] or non-probabilistic (such
as intervals [10], convex [11], and fuzzy [12]) and they are used in
conjunction with a computational model to compute the effects of the
uncertainties on the response.

The most widely used parametric uncertainty description is the
probabilistic one based on a specified probability density function (pdf).
This description requires a large amount of data if the pdf is constructed
using a frequentist view, or it may be interpreted as a statement of belief
based on expert opinion, as in the subjective approach to probability
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theory. The more common frequentist approach is concerned with
the outcome of experiments performed (hypothetically or in reality)
on large ensembles of systems; these ensembles may either be real
(for example cars from a production line), or virtual but realizable in
principle (such as an ensemble of manufactured satellites, when only
one satellite may actually be built). In contrast, with the subjective
approach, no ensemble is necessarily involved. The pdf is interpreted
as a statement of belief, rather than a frequentist statement, meaning
that the analyst can specify a pdf in the absence of large quantities of
data. The frequentist and subjective views can be roughly aligned with
the notion of aleatory and epistemic uncertainty: aleatory uncertainty is
an irreducible uncertainty due to an inherent variability of the system
parameters, while epistemic uncertainty is reducible, being associated
to a lack of knowledge of the actual values of the parameters which are
fixed.

In the frequentist case there is often insufficient data to empirically
determine the pdf, due to cost or time constraints, and it may not be
possible to take measurements if the structure does not yet exist. Simi-
larly, in the subjective case, the analyst may have uncertainties in belief,
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meaning that the specified pdf is itself subject to doubt. Alternative
uncertainty models have been developed by introducing uncertainty in
the assignment of the parameters of a probability density function (pdf),
and/or the pdf itself. These models are broadly referred to as ‘‘imprecise
probability approaches’’. The idea of specifying upper and lower bounds
on an imprecisely known probability of an event was introduced about
100 years ago by Boole [13] and Keynes [14]. Later, Walley [15] and
Weichselberger [16] developed generalized probability theories. The
imprecise probability approaches which are most widely used can be
broadly classified into five groups: (i) Probability boxes [17,18]; (ii)
Possibility theory [19,20], (iii) Evidence theory [21–25], (iv) Imprecise
pdf descriptions based on the specification of interval constraints on
the expectation of functions of the uncertain variable, such as the
approach proposed by Utkin and co-workers [26,27]; (v) Probability
and cumulative density functions (pdf and cdf) with non-probabilistic
parameters (i.e. interval, convex, fuzzy descriptions), such as: (a) Pa-
rameterized P-Box [28]; (b) Fuzzy probability theory (also known as
Fuzzy randomness) [29–31]; (c) Fuzzy random variable [32,33]; (d)
First Order Reliability Method (FORM) [1] approaches which employ
pdfs with one [34] or two [35] bounded parameters (mean, variance or
another distribution parameter); (e) Reliability models based on impre-
cise Bayesian inference models [36]; (f) Interval importance sampling
methods combined with specified pdf with bounded parameters [37].

Another way of dealing with limited information about a distribution
is Maximum Entropy [38]. Maximum Entropy is a well-established
approach to deriving a subjective probability density function (pdf)
using statistical moments information only. However, there might be
little confidence on statistical moments estimated from a small data
set. Moreover, if no data is available and the pdf is interpreted as
a statement of belief, the analyst may have uncertainties in belief
and might prefer not to specify exact statistical moments. Therefore,
statistical moments might be known only to lie in a certain domain,
rather than being precisely known. In this case Maximum Entropy would
select a unique distribution which maximizes the entropy and whose
statistical properties are within the statistical moment domain [38,39].
However, in this process some of the initial information is lost, since
only one point of the statistical moment domain would be considered
and other points, to which correspond different pdfs, are discarded.
However, the pdf which maximizes (or equivalently minimizes) an
engineering metric is potentially different from the pdf which maximizes
the entropy.

A new approach to uncertainty modelling which is based on a
generalization of maximum entropy theory is presented in this paper,
and applied to a number of engineering examples. With this approach,
when the statistical moments are known only to lie in a certain domain,
instead of selecting the pdf which maximize the entropy, a family of
Maximum Entropy distributions is constructed. This is achieved by
representing the pdf of the vaguely known variable as the exponential
of a linear combination of functions of the uncertain variable and
bounded parameters. This form is equivalent to the Maximum entropy
distribution, where the Lagrange multipliers (which are constant values)
are substituted by bounded parameters, leading to a set of pdfs. These
bounded parameters are referred to as basic variables, defined as having
any form of distribution lying between certain bounds, encompassing
at the extreme a delta function at any point between the bounds. A
mapping procedure is devised to convert bounded information on the
statistical moments into bounds on the basic variables. With this ap-
proach a bounded response description is then obtained by maximizing
(minimizing) a response metric over the set of pdfs to: (i) establish the
effects of the imprecisely known pdf on the response; and (ii) identify of
the worst case scenario (e.g. the highest failure probability expected).

The present approach has similarities to that proposed by
Utkin [26,27], in that the information considered is a set of constraints
on the statistical moments. However, in [26,27] the set of moments yield
to many possible distributions with no consideration of Entropy, and a
set of complex optimization problems is performed to yield bounds on

the expectation of the response or on the reliability of the system, which
restrict its application to simple problems. Instead, within the proposed
approach, the specified set of constraints are used to: (i) identify the
form of the Maximum Entropy distribution, and to (ii) yield bounds on
the basic variables of the pdf to construct a set of maximum entropy
pdfs.

As described above, the main aim of the present paper is to present
a generalization of the Maximum Entropy principle given uncertain
statistical information, leading to a family of probability distributions
that can be used to make engineering judgements. The theory behind
this approach is presented in Section 2, with a numerical example of
the treatment of bounded information in Section 2.2.4. Attention is then
turned to three engineering applications, namely the fatigue failure of a
structural joint (Section 3.1), the overstress failure of a structural joint
(Section 3.2), and the random vibration of an oscillator (Section 3.3).
Aspects of theory relating specifically to the example applications are
contained in the relevant subsections, to emphasize the fact that the
theory presented in Section 2 is general, and not directed at any specific
example.

2. Generalized Maximum Entropy distribution under uncertain
statistical information

In Section 2.1 the procedure for deriving a probability density
function with the Maximum Entropy principle is first reviewed. The
approach is then generalized to account for uncertainty in the statistical
moments in Section 2.2.

2.1. Review of Maximum Entropy

The principle of Maximum Entropy [38] allows the construction of
a subjective pdf 𝑝 (𝑥) of an uncertain variable 𝑥 [38] which incorporates
the current state of knowledge by maximizing the relative entropy
subject to constraints representing the available information.

The relative entropy, that is the amount of uncertainty in the
probability distribution 𝑝 (𝑥), is given by [38]:

𝐻 = −∫

+∞

−∞
𝑝 (𝑥) log

(

𝑝 (𝑥)
𝑡 (𝑥)

)

d𝑥 (1)

where 𝑡 (𝑥) is a reference pdf (which is also known as the prior distribu-
tion) introduced to allow the entropy to be frame invariant [38,40].

The available information regarding the statistics of the variable
𝑥 is expressed in terms of 𝑛 equality constraints on the statistical
expectations in the form:

E
[

𝑓𝑗 (𝑥)
]

= ∫

+∞

−∞
𝑓𝑗 (𝑥) 𝑝 (𝑥) d𝑥 𝑗 = 2, 3,… , 𝑛 (2)

where 𝑓𝑗 (𝑥) are specified functions of 𝑥 , and E
[

𝑓𝑗 (𝑥)
]

is the statistical
expectation of 𝑓𝑗 (𝑥). If 𝑓𝑗 (𝑥) = 𝑥 then the constraints are specified on
the mean value, alternatively if 𝑓𝑗 (𝑥) = 𝑥2 they are specified on the
second moment. The function 𝑓𝑗 (𝑥) can be also defined as an interval of
possible values that the uncertain variable may take, i.e. 𝑓𝑗 (𝑥) = [𝑏, 𝑐];
in this case the constraints corresponds to the probability of finding 𝑥
within those bounds.

This constrained maximization problem (maximizing Eq. (1) subject
to Eq. (2)) can be solved by using the method of Lagrange multi-
pliers [38], which is based on transforming the original constrained
optimization problem into an unconstrained dual optimization problem
in the form:

− ∫

+∞

−∞
𝑝 (𝑥) log

(

𝑝 (𝑥)
𝑡 (𝑥)

)

d𝑥

+
𝑛
∑

𝑗=1
𝜆𝑗

{

∫

+∞

−∞
𝑓 (𝑥) 𝑝 (𝑥) d𝑥 − E

[

𝑓𝑗 (𝑥)
]

}

(3)

where 𝜆𝑗 are the 𝑛 Lagrange multipliers. The maximization of the
functional in Eq. (3) is then obtained using the calculus of variations,
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