Accepted Manuscript

Green cement composite concept reinforced by graphite nano-engineered particle suspension for infrastructure renewal material

Mehmet S. Kirgiz

PII: \$1359-8368(18)31695-0

DOI: 10.1016/j.compositesb.2018.09.012

Reference: JCOMB 5982

To appear in: Composites Part B

Received Date: 28 May 2018

Revised Date: 8 September 2018
Accepted Date: 10 September 2018

Please cite this article as: Kirgiz MS, Green cement composite concept reinforced by graphite nanoengineered particle suspension for infrastructure renewal material, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.09.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Green Cement Composite Concept Reinforced by Graphite Nano-Engineered

Particle Suspension for Infrastructure Renewal Material

Mehmet S. KIRGIZ^{a†}

^aUniversity of Thrace, Faculty of Architecture, Edirne 22020, TURKEY

Abstract

Renewal of infrastructure is significant concern in most countries around the globe. Sustainable

renewal of infrastructure needs an innovative concept that is inexpensive, quickly hardened, and

strength gained at the early age, such as green cement composite concept explained in the study.

This article aims to present the physical properties of green cement composite concept reinforced by

the graphite nano-engineered particle suspension (GNPS) by means of sustainability, stiffness,

hydraulic lateral formwork pressure, and strength gain at early age. Results of numerous tests

measured, such as the optical atomic absorbance spectra, the initial and final stiffness of time, the

flow, and the early age compressive strength of green composite concept, are discussed. In all tests,

the usability of GNPS is displayed as innovative original nano-engineered-suspension for

infrastructure renewal material and for manufacturing of green cement composite concept

effectively. For that reason, the results of this work could bring new materials to cement and

concrete producers, specifiers, and end-users; and new market could emerge to provide the GNP

and the GNPS in additive and admixture forms

Keywords: A.Nano-structures; A.Recycling; B.Mechanical properties; B.Physical properties; Green

Cement Composite, Infrastructure Renewal Material, Graphite Nano-Engineered Particle

Suspension

[†]Current position: Professor Dr.

Corresponding author at: University of Thrace, Faculty of Architecture, Edirne 22020, Turkey.

Tel.: +90 539 6145238.

E-mail: nakres42@yahoo.com

Download English Version:

https://daneshyari.com/en/article/11004209

Download Persian Version:

 $\underline{https://daneshyari.com/article/11004209}$

Daneshyari.com