Accepted Manuscript

Analysis of functionally graded sandwich plates using a higher-order layerwise theory

Shashank Pandey, S. Pradyumna

PII: S1359-8368(18)32081-X

DOI: 10.1016/j.compositesb.2018.08.121

Reference: JCOMB 5951

To appear in: Composites Part B

Received Date: 3 July 2018

Revised Date: 19 August 2018 Accepted Date: 24 August 2018

Please cite this article as: Pandey S, Pradyumna S, Analysis of functionally graded sandwich plates using a higher-order layerwise theory, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.08.121.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Analysis of functionally graded sandwich plates using a higher-order layerwise theory

Shashank Pandey¹ and S. Pradyumna²

Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India

Abstract

A higher-order layerwise finite element formulation is presented for static and dynamic analyses of functionally graded material (FGM) sandwich plates. A higher-order displacement field is assumed for core and first-order displacement field is assumed for top and bottom facesheets maintaining a continuity of displacement at layer interface. An eight noded isoparametric element using a C⁰ based finite element formulation with thirteen degrees of freedom per node has been considered in the present work. Two configurations of FGM sandwich plates, one with FGM core and homogenous facesheets and second having top and bottom layers made of FGM and homogenous core are considered. Effective material properties of the FGM are computed using rule of mixture (ROM). In order to establish the correctness of the present finite element formulation for wide range of problems for two configurations of FGM sandwich plates, comparison studies are presented. Next, parametric studies are taken up to investigate the effects of volume fraction index, span to thickness ratio and boundary conditions on static and dynamic behavior of FGM sandwich plate. It is shown

¹Shashank Pandey (Corresponding author): E-mail: shashankpandey200@gmail.com, (Currently working as Assistant Professor in the department of Mechanical Engineering at National Institute of Technology Jamshedpur, India)

²S. Pradyumna: E-mail: pradyum@am.iitd.ac.in Telephone: +91-11-26591222

Download English Version:

https://daneshyari.com/en/article/11004221

Download Persian Version:

https://daneshyari.com/article/11004221

<u>Daneshyari.com</u>