Accepted Manuscript

Vibration analysis for sector cylindrical shells with bi-directional functionally graded materials and elastically restrained edges

Mingfei Chen, Guoyong Jin, Xianglong Ma, Yantao Zhang, Tiangui Ye, Zhigang Liu

COMPOSITES

Part 8: engineering

PII: \$1359-8368(18)31595-6

DOI: 10.1016/j.compositesb.2018.08.129

Reference: JCOMB 5959

To appear in: Composites Part B

Received Date: 18 May 2018
Revised Date: 20 August 2018
Accepted Date: 28 August 2018

Please cite this article as: Chen M, Jin G, Ma X, Zhang Y, Ye T, Liu Z, Vibration analysis for sector cylindrical shells with bi-directional functionally graded materials and elastically restrained edges, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.08.129.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Vibration analysis for sector cylindrical shells with bi-directional functionally graded materials and elastically restrained edges

Mingfei Chen a,*, Guoyong Jin a, Xianglong Ma, Yantao Zhang a, Tiangui Ye, Zhigang Liu, a,

^aCollege of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, P. R.

China

^bShanghai Marine Equipment Research Institute, Shanghai, 200031, P. R. China

Abstract

This paper is firstly concerned with natural vibration of sector cylindrical shells with bi-directional functionally graded (BFG) materials and elastically restrained edges by an effective method based on isogeometric analysis (IGA). Effective material properties of longitudinal and circumferential graded materials are obtained by using exponential law and power-law with the mixtures rule. The first order shear deformation theory (FSDT) and a typical IGA cylindrical shells element are introduced to fulfill the vibration investigation. In numerical results, the convergence and accuracy with the current work are validated. Moreover, effects of geometric proprieties, material parameters as well as boundary conditions on the frequencies are also examined. The investigation of results confirms that material properties and radius-length ratio have significant effects on the mechanical behaviors of shells.

Keywords: Natural vibration; Sector cylindrical shells; Bi-directional functionally graded materials; Elastically restrained edges; Isogeometric analysis

1. Introduction

As an advanced engineering composite materials, functionally graded material (FGM)

^{*} Corresponding author, Tel: +86 451-82569458 Fax: +86 451-82518264 E-mail address: mingfeichen@hrbeu.edu.cn (M, Chen), guoyongjin@hrbeu.edu.cn (G, Jin).

Download English Version:

https://daneshyari.com/en/article/11004223

Download Persian Version:

 $\underline{https://daneshyari.com/article/11004223}$

Daneshyari.com