# **Accepted Manuscript**

Self-healing improves the stability and safety of polymer bonded explosives

Xin Huang, Zhong Huang, Jian-Cheng Lai, Lei Li, Guang-Cheng Yang, Cheng-Hui Li

PII: S0266-3538(18)30789-9

DOI: 10.1016/j.compscitech.2018.08.025

Reference: CSTE 7358

To appear in: Composites Science and Technology

Received Date: 3 April 2018
Revised Date: 13 July 2018

Accepted Date: 18 August 2018

Please cite this article as: Huang X, Huang Z, Lai J-C, Li L, Yang G-C, Li C-H, Self-healing improves the stability and safety of polymer bonded explosives, *Composites Science and Technology* (2018), doi: 10.1016/j.compscitech.2018.08.025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



#### ACCEPTED MANUSCRIPT

## **Article type: Full Paper**

Title: Self-healing Improves the Stability and Safety of Polymer Bonded Explosives

Xin Huang,  $^{a,b}$  Zhong Huang,  $^a$  Jian-Cheng Lai,  $^b$  Lei Li,  $^c$  Guang-Cheng Yang  $^{*a}$  and Cheng-Hui Li  $^{*b}$ 

a Institute of Chemical Material, CAEP, Mianyang, 621999, P. R. China.

E-mail: ygcheng@caep.cn

b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China

E-mail: chli@nju.edu.cn

c Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China

† Electronic Supplementary Information (ESI) available.

Keywords: self-healing; polymer bonded explosives; fluoropolymer; ionic liquid; composites

#### **Abstract:**

Polymer-bonded explosives (PBXs) are often subjected to different external environmental conditions with various temperature and humidity during long-term storage, transportation, and usage process. The change in temperature and humidity will result in PBXs cracks formation and cause higher risk of explosion evolution when undergoing various stimulus including impact or friction. Herein, a self-healing polymer binder is developed to solve this problem. The fluoropolymer gel binder, a PVDF-co-HFP (copolymer of CH<sub>2</sub>-CF<sub>2</sub> and CF<sub>2</sub>-CF(CF<sub>3</sub>))/EMIOTf (1-ethyl-3-methylimidazolium trifluoromethanesulfonate)/graphene ternary composite, has high density, high thermal conductivity, excellent interfacial adhesion property, and exhibits self-healing ability at room temperature. Highly filled PBXs composites with 95 % of explosive 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) and 5 % of ternary composite are fabricated. The as-prepared PBX samples have high denotation parameter (7800 m s<sup>-1</sup>), low impact sensitivities (11-12 J), and low friction sensitivity (no sparks was observed even at friction

### Download English Version:

# https://daneshyari.com/en/article/11004253

Download Persian Version:

https://daneshyari.com/article/11004253

<u>Daneshyari.com</u>