Global well-posedness of the two-dimensional Benjamin equation in the energy space

Wengu Chen ${ }^{\text {a }}$, Suqing Wei ${ }^{\text {b }}$, Junfeng Li ${ }^{\text {c }, *}$
${ }^{\text {a }}$ Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
${ }^{\text {b }}$ Graduate School, China Academy of Engineering Physics, Beijing, 100088, China
${ }^{c}$ Laboratory of Math and Complex systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China

A R T I C L E I N F O

Article history:
Received 15 November 2016
Received in revised form 3 August 2018
Accepted 6 August 2018
Available online 23 August 2018

Keywords:

Benjamin equation
Energy estimate
Energy space
Global well-posedness

A B S T R A C T

In this paper, the global well-posedness of the Cauchy problem for the twodimensional Benjamin equation

$$
\left\{\begin{array}{l}
\partial_{t} u+\partial_{x}^{3} u-\epsilon \mathcal{H} \partial_{x}^{2} u-\partial_{x}^{-1} \partial_{y}^{2} u+\partial_{x}\left(u^{2} / 2\right)=0, \\
u(x, y, 0)=\phi(x, y)
\end{array}\right.
$$

in the energy space $E^{1}=\left\{u:\|u\|_{L^{2}}+\left\|\partial_{x} u\right\|_{L^{2}}+\left\|\partial_{x}^{-1} \partial_{y} u\right\|_{L^{2}}<\infty\right\}$ is obtained.
(C) 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is mainly concerned with the global well-posedness of the Cauchy problem for the two dimensional Benjamin equation (2D Benjamin)

$$
\left\{\begin{array}{l}
\partial_{t} u+\partial_{x}^{3} u-\epsilon \mathcal{H} \partial_{x}^{2} u-\partial_{x}^{-1} \partial_{y}^{2} u+\partial_{x}\left(u^{2} / 2\right)=0 \tag{1.1}\\
u(x, y, 0)=\phi(x, y)
\end{array}\right.
$$

where $u=u(x, y, t),(x, y) \in \mathbb{R}^{2}, t \in \mathbb{R}, \epsilon= \pm 1, \mathcal{H}$ is the Hilbert transform in the x axis defined by $\widehat{\mathcal{H} u}(\xi)=-i \operatorname{sgn}(\xi) \hat{u}(\xi)$. The inverse derivative operator ∂_{x}^{-1} is defined by its Fourier transform $\widehat{\partial_{x}^{-1}}(\xi)=\frac{1}{i \xi}$. The 2D Benjamin arises as a high dimensional extension of the Benjamin equation. The latter models the dispersive wave motion of weakly nonlinear long waves in a two fluid system where the interface is subject to capillarity and the lower fluid is very deep (see [1,2]). The 2D Benjamin equation allows for weak spatial variations transverse to the propagation direction, and can be formally derived by a standard weakly nonlinear long wave expansion (see [3]).

[^0]The Benjamin equation has been extensively studied (see [4-8]). It can be written as

$$
\left\{\begin{array}{l}
\partial_{t} u-\gamma \partial_{x} u+\alpha \mathcal{H} \partial_{x}^{2} u+\beta \partial_{x}^{3} u+\partial_{x}\left(u^{2}\right)=0, \quad(x, t) \in \mathbb{R} \times \mathbb{R}, \tag{1.2}\\
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R} .
\end{array}\right.
$$

The Benjamin equation is viewed as a combination of the Benjamin-Ono (BO) equation with the Kortewegde Vries (KdV) equation. The former requires $\alpha \neq 0$ and $\beta=0$ in (1.2) and the latter asks for $\alpha=0$ and $\beta \neq 0$. This slight variation brings tremendous difference. The dispersive term in the BO equation is too weak to obtain the well-posedness by Picard iteration, so the wellposed results in low regularity spaces are not as good as those of KdV problem (see [9-11]). The main obstruction to simply using bilinear estimates in some $X^{\sigma, b}$ space (in a way similar to the case of the KdV equation in [12] or nonlinear wave equations in [13]) is the lack of control of the interaction between very high and very low frequencies of solutions. T. Tao proved that the BO equation initial value problem is globally well-posed in $H^{1}(\mathbb{R})$ [14]. A. Ionescu and C. Kenig obtained its global well-posedness in $H^{\sigma}, \sigma \geq 0$ [15]. The KdV equation, without the competition between the Benjamin-Ono term and the third order derivative term, has wellposedness in lower regularity spaces. C. Kenig, G. Ponce and L. Vega obtained the local well-posedness in classical Sobolev spaces of negative indices $H^{\sigma}(\mathbb{R}), \sigma>-3 / 4[16]$ and L. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao extended it to a global result (see [17]). For the endpoint $\sigma=-3 / 4$, M. Christ, J. Colliander and T. Tao obtained the local well-posedness (see [18]). Z. Guo [19] and N. Kishimoto [20] extended it to the global well-posedness independently. For $\sigma<-3 / 4$, C. Kenig, G. Ponce and L. Vega [21], M. Christ, J. Colliander and T. Tao [18] got ill-posedness. For the Benjamin equation (1.2) with both the Benjamin-Ono term and the third order derivative term shares the same results with KdV in well-posedness (for more details see [22-25]). 2D Benjamin is viewed as a combination of the BO and Kadomtsev-Petviashvili (KP) equation. This motivates us to consider 2D Benjamin and ask whether it shares the wellposedness results with the KP equation.

The KP equation is written as

$$
\begin{equation*}
\partial_{t} u+\partial_{x}^{3} u-\partial_{x}^{-1} \partial_{y}^{2} u+\partial_{x}\left(u^{2} / 2\right)=0 \tag{1.3}
\end{equation*}
$$

There are actually two types of KP equations, KP-I and KP-II. Here we only mention the first type which has direct relation with the 2D Benjamin equation (1.1). As the BO equation, KP-I has been shown in [26] and [27] that it is badly behaved with respect to Picard iterative methods in standard Sobolev spaces, since the flow map fails to be real-analytic at the origin in these spaces. If we lose the real-analytic flow restriction, there still are some wonderful results. We would like to mention the excellent work of A. Ionescu, C. Kenig and D. Tataru [28]. They set up the global well-posedness of KP-I in the energy space. Here the energy space can be defined by

$$
\begin{equation*}
E^{1}=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right):\|u\|_{E^{1}}=\left\|\left(1+|\xi|+|\xi|^{-1}|\eta|\right) \hat{u}(\xi, \eta)\right\|_{L^{2}}<\infty\right\} . \tag{1.4}
\end{equation*}
$$

This space comes from the conservation of the momentum and energy of KP-I. In their paper, they extensively developed the modified energy space in the so called "short-time" Bourgain spaces which became a powerful method to set up the well-posedness in many nonlinear PDEs.

The 2D Benjamin equation possesses the following two conservation laws:

$$
\widetilde{E}^{0}(u(t))=\int_{\mathbb{R}^{2}} u^{2}(x, y, t) d x d y=\int_{\mathbb{R}^{2}} u^{2}(x, y, 0) d x d y=\widetilde{E}^{0}(u(0)),
$$

and

$$
\begin{aligned}
\widetilde{E}^{1}(u(t)) & =\frac{1}{2} \int_{\mathbb{R}^{2}}\left[\left(\partial_{x} u\right)^{2} \pm\left|\left|D_{x}\right|^{1 / 2} u\right|^{2}+\left(\partial_{x}^{-1} \partial_{y} u\right)^{2}-\frac{u^{3}}{3}\right](x, y, t) d x d y \\
& =\frac{1}{2} \int_{\mathbb{R}^{2}}\left[\left(\partial_{x} u\right)^{2} \pm\left|\left|D_{x}\right|^{1 / 2} u\right|^{2}+\left(\partial_{x}^{-1} \partial_{y} u\right)^{2}-\frac{u^{3}}{3}\right](x, y, 0) d x d y=\widetilde{E}^{1}(u(0)) .
\end{aligned}
$$

https://daneshyari.com/en/article/11004294

Download Persian Version:
https://daneshyari.com/article/11004294

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: lijunfeng@bnu.edu.cn (J. Li).

