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a b s t r a c t

We provide probabilistic forecasts of photovoltaic (PV) production, for several PV plants
located in France up to 6 days of lead time,with a 30-min timestep. First, we derivemultiple
forecasts from numerical weather predictions (ECMWF and Météo France), including
ensemble forecasts. Second, our parameter-free online learning technique generates a
weighted combination of the production forecasts for each PV plant. The weights are
computed sequentially before each forecast using only past information. Our strategy is
to minimize the Continuous Ranked Probability Score (CRPS). We show that our technique
provides forecast improvements for both deterministic and probabilistic evaluation tools.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

0. Introduction

Improved photovoltaic power integration needs better
power forecasts. Forecastersmay pursue efforts to improve
meteorological models, weather-based power models or
statistical post-processing methods. For our part, we fo-
cus on the following case: a forecaster, willing to provide
probabilistic PV power forecasts, retrieves multiple mete-
orological forecasts (possibly from various sources). In this
general setting, numerous state-of-the-art methods can be
tested and combined.

Meteorological forecasts can either be deterministic
single forecasts or an ensemble of forecasts, usually at
coarser resolution. Inman, Pedro, and Coimbra (2013) pro-
vide a review of PV forecasting methods with determin-
istic forecasts. Ensemble forecasting and more generally
probabilistic forecasting has been widely covered in the
meteorological community (Gneiting & Katzfuss, 2014).
Only recently, ensemble-based forecasting techniques are
tested for PV (Zamo, Mestre, Arbogast, & Pannekoucke,
2014), while these techniques are more common for wind

* Corresponding author at: INRIA, Paris, France.
E-mail address: jean.thorey@inria.fr (J. Thorey).

and wind power forecasting (Ren, Suganthan, & Srikanth,
2015).

A recent benchmark of deterministic and probabilistic
PV forecasts is analyzed in Sperati, Alessandrini, Pinson,
and Kariniotakis (2015), along with classical diagnostic
tools. Probabilistic forecasts rely on the estimation of quan-
tiles of the predicted probability density function (PDF).
Quantile regression (Almeida, Perpiñán, & Narvarte, 2015)
and analogs (Alessandrini, Delle Monache, Sperati, & Cer-
vone, 2015; Huang & Perry, 2015) are amongst the most
popular techniques for quantile estimation in PV. These
techniques do not require an ensemble of forecasts as they
can rely only on the historical variability of the forecasts
and production data. The main drawback of most of the
previously cited methods is that they use a single method
and not a combination of several methods.

A forecaster having multiple forecasts hopefully wishes
to combine them. In our case, we combine deterministic
forecasts, quantile forecasts and ensemble forecasts, which
is seldom the case. We combine these different types of
forecasts to take advantage of their diversity. On the one
hand, ensemble members describe several meteorological
situations. On the other hand, quantile forecasts are built
from the errors of a deterministic forecast, which describes
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a single meteorological situation with a finer resolution
than the ensemble forecasts. Quantile forecasts estimate
the inability of the forecaster to provide a perfect deter-
ministic forecast.

The forecasts combination can be carried out in an opti-
mal way. A batch process would not produce an estimation
based on all available data but only on a limited learning
data set. A batch process can be updated but it will only
mimic an online learning technique. On the contrary, on-
line learning techniques provide rules for combining fore-
casts, see the monograph (Cesa-Bianchi & Lugosi, 2006).
The combination rules stemming from online learning de-
pendonly on the available past information at each forecast
step and comewith theoretical performance guarantee un-
der essentially no assumptions (concerning prior weights,
underlying stochastic process or distributions). The theo-
retical guarantee of the online learning algorithm can be
seen as a long term performance guarantee without sta-
tionarity or ergodicity assumptions. Online learning tech-
niques have been tested for several applications: electricity
consumption, ozone concentration, wind and geopotential
fields, and solar irradiance (Baudin, 2015; Devaine, Gail-
lard, Goude, & Stoltz, 2013; Mallet, 2010; Mallet, Stoltz, &
Mauricette, 2009; Stoltz, 2010; Thorey, Mallet, Chaussin,
Descamps, & Blanc, 2015).

This paper presents application results with our inno-
vative approach (Thorey, Mallet, & Baudin, 2016), whose
purpose is to combinemultiple forecasters in a linear opin-
ion pool (Genest & McConway, 1990; Geweke & Amisano,
2011). The originality of our technique is to use combi-
nation rules deriving from online learning techniques in
order to minimize the CRPS of the weighted empirical dis-
tribution function. We stress here the fact that our method
provides theoretical guarantee and that it does not rely on
distribution assumptions. Besides, the algorithm has a low
computational cost and is parameter-free. Our framework
is inspired from the work of Gaillard, Goude, and Nedellec
(2016), which focuses on quantile scoring functions.

Minimizing the CRPS is a common strategy in the
meteorological literature to obtain calibrated probabilis-
tic forecasts. However, standard techniques do not offer
theoretical guarantees of robustness and usually resort
to strong assumptions on the distributions. For example,
Bayesian model averaging (BMA) techniques provide a
mixture of parametric distributions, usually a Gaussian
sum (Raftery, Gneiting, Balabdaoui, & Polakowski, 2005) or
gamma distributions sum for wind and precipitation ap-
plications (Sloughter, Gneiting, & Raftery, 2010; Sloughter,
Raftery, Gneiting, & Fraley, 2007). Non-homogeneous re-
gression fits the parameters of a parameterized distri-
bution using characteristics of the ensemble of forecasts
(Gneiting, Raftery, Westveld III, & Goldman, 2005; Tho-
rarinsdottir & Gneiting, 2010; Wilks, 2009). For instance, a
Gaussiandistribution is fittedusing a linearmodel between
the mean of the distribution and the mean of the forecasts.
Besides, likelihood maximization with the logarithm loss
is not an appropriate tool in our setting since it fails to
produce satisfactory scores for a discrete probability distri-
bution. A discussion on local scores such as the logarithm
loss is addressed by Bröcker and Smith (2007b).

Table 1
Forecast availability with lead time. PEARP is the Météo France ensemble,
Det defines the deterministic forecasts Arpège and HRES, and ENS is the
ECMWF ensemble.

D D + 1 D + 2 D + 3 D + 4 D + 5

PEARP PEARP x x x x
Det Det Det Det x x
ENS ENS ENS ENS ENS ENS

The main contributions of this manuscript are twofold:

• We show probabilistic forecasts performance on
a large data set comprising 219 PV power plants
with deterministic, quantile and deterministic fore-
casts from two meteorological centers (ECMWF and
Météo France). We evaluate PV forecasts that are
used operationally at a country-scale.

• Our statistical postprocessing technique creates a
weighted empirical distribution by CRPS minimiza-
tion with theoretical guarantees under essentially
no assumptions.

In Section 1, we introduce the production data sets and
the forecasts fromECMWFandMétéo France.Wedetail our
method to generate deterministic, quantile and ensemble
PV forecasts from ensemble and deterministic weather
forecasts. We finish this section by describing linear opin-
ion pools, or in other words, by describing how we build
a probabilistic forecast from multiple pointwise forecasts.
The evaluation tools are described in Section 2, with a
focus on the CRPS. Our statistical post-processing method
is explained in Section 3. We detail how the weights of
the linear opinion pool are updated. Numerical results and
discussions are developed in Section 4. The deterministic
and probabilistic predictive skills of the present forecasts
are computed. In particular, we highlight the benefits of
using our online learning algorithm compared to simply
using uniform weights.

1. Methods

1.1. Production and meteorological data

The production data cover 219 PV power plants in
metropolitan France with 21 consecutive months (January
2012 to October 2013). The total power of the plants
is referred to as France production. We wish to provide
production forecasts for each power plant and for France
production. The data are shown as load factor, i.e. scaled
by the installed capacity. France production forecasts are
theweighted sums of the plant forecasts w.r.t. the installed
capacity of each plant.

Forecast data are summarized in Tables 1 and 2. We
use data from two meteorological centers (ECMWF and
Météo France), both deterministic forecasts and ensembles
of forecasts: HRES and ENS for ECMWF, and ARPEGE and
PEARP forMétéo France (Courtier, Freydier, Geleyn, Rabier,
& Rochas, 1991; Descamps et al., 2015; Palmer et al., 2009),
up to a lead time of 6 days. Note that the deterministic fore-
casts are not the unperturbedmembers of the ensembles of
forecasts but different forecasts, with better resolution.
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