
Contents lists available at ScienceDirect

International Journal of Industrial Ergonomics

journal homepage: www.elsevier.com/locate/ergon

Effect of shoulder angle variation on sEMG-based elbow joint angle
estimation

Zhichuan Tanga,b,∗, Hongchun Yanga, Lekai Zhanga, Pengcheng Liuc

a Industrial Design Institute, Zhejiang University of Technology, Hangzhou, 310014, China
bModern Industrial Design Institute, Zhejiang University, Hangzhou, 310027, China
c Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln LN5 7DH, UK

A R T I C L E I N F O

Keywords:
Shoulder angle
Electromyogram
Elbow angle
Estimation

A B S T R A C T

For the decade now, surface electromyogram (sEMG) signal has been extensively applied in joint angle esti-
mation to control the prostheses and exoskeleton systems. However, the sEMG signal patterns can be severely
affected by shoulder angle variations, which restricts its applications to a practical use. In our study, we evaluate
the effect of shoulder angle variations on elbow angle estimation performance. This adverse effect increases
mean root mean square (RMS) error by ∘14.85 in our experiment. Then, four estimation methods are proposed to
solve this problem: (1) using a training set including all shoulder angles' training data to train model; (2) adding
two shoulder muscles' sEMG as additional inputs; (3) a two-step method using arm muscles' sEMG and two
shoulder muscles' sEMG; and (4) a two-step method using arm muscles' sEMG and measured shoulder angle
value by a motion sensor. 13 subjects are employed in this study. The experimental results demonstrate that the
mean RMS error is reduced from ∘21.36 to ∘12.85 in method one, ∘9.84 in method two, ∘7.67 in method three, and

∘6.93 in method four, respectively. These results show that our methods are effective to eliminate the adverse
effect of shoulder angle variations and achieve a better elbow angle estimation performance. Furthermore, this
study is helpful to develop a natural and stable control system for prostheses and exoskeleton systems.

1. Introduction

As a non-invasive technology, surface electromyogram (sEMG)
signal can be used for an interaction way between people and en-
vironment efficiently and friendly in daily life (Lorrain et al., 2011).
Since sEMG directly shows the real-time activity level of muscles (Su
et al., 2013; Tang et al., 2014a), many previous studies applied sEMG in
joint angle estimation to control the prostheses and exoskeleton systems
(Sylos-Labini et al., 2014; Kiguchi and Hayashi, 2012; White et al.,
2017; Brunelli et al., 2015; Tang et al., 2014b; Farina et al., 2014;
Fougner et al., 2012; Theurel et al., 2018). The overall control archi-
tecture of these applications can be generalized as: (1) preprocessing
the sEMG signals to remove the noise or artifacts, (2) extracting various
types of features, (3) feeding these features into a trained estimation
model to identify an angle, and (4) conveying a control signal trans-
formed from the output of the model to the device.

Most studies on sEMG-based joint angle estimation to control the
prostheses and exoskeleton systems mainly aim to obtain a better off-
line estimation performance according to algorithm improvement in
feature extraction and estimation process (Ngeo et al., 2013; Valentini

et al., 2015; Araki et al., 2013; Yang et al., 2017). Some methods can
achieve a extremely good estimation performance (higher than 95%
accuracy) (Erik Scheme and Kevin Englehart, 2011). However, previous
efforts towards sEMG-based joint angle estimation were under pre-
defined experimental setting (Farooq and Khan, 2014). Some external
factors, like limb position variations (Scheme et al., 2010), force var-
iations (Al-Timemy et al., 2016; Tang et al., 2016), electrode dis-
placements (Cipriani et al., 2012) and electrode locations (Hwang et al.,
2014), can affect the sEMG signals collection and make a worse esti-
mation performance in practical use. Besides, the elbow angle estima-
tion performance may be affected by the shoulder angle variations
significantly. For example, in the experimental state, the arm sEMG
signals are always collected at a predefined shoulder angle for each
subject, which is easy to perform repeatable contractions and acquire
stable training data (Fougner et al., 2011); in practical use, more un-
predictable shoulder angles may happen due to the various upper-limb
movements in daily life, which degrades the estimation performance
deriving by physiological variations of muscles. Some researchers have
turned their attention to investigate the impact of upper-limb position
on performance of sEMG-based pattern recognition systems. Scheme
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et al. (2010) used the training data and testing data from the same or
different limb positions to train sEMG-based classification models, and
found that limb position variations led to a significant increase of sEMG
classification error from 6.9% to 35.0%. Jiang et al. (2013) demon-
strated that changing arm position adversely influences the prediction
performance of kinematics from sEMG, and the experimental results
showed the intra-position R2 values were significantly higher than the
corresponding inter-position values ( <p 0.001). However, few studies
have investigated the performance of elbow angle estimation if the
shoulder angle changes.

In a traditional way, elbow angle can be estimated using sEMG
signals from several arm muscles (Luh et al., 1999; Tang et al., 2014b;
Raj and Sivanandan, 2015). But since shoulder angle information
cannot be acquired from sEMG of these arm muscles directly, it is dif-
ficult to deal with the adverse effect of shoulder angle using a tradi-
tional sEMG-based estimation method. The similar limitation also
happens in the effect of arm position on sEMG-based gesture recogni-
tion. Several studies have focused on the additional inputs and novel
estimation scheme. Geng et al. (2012) used sEMG sensors and a me-
chanomyogram (MMG) sensor to solve the effect of limb position on
motion classification for real-time prostheses control, and achieved a
maximum increase of completion rate from 81.4% to 94.3%. Park et al.
(2016) applied the ensemble-learning method to propose a position-
independent decoding model to estimate the likelihood of different arm
positions, which could successfully decode four wrist movements in
different arm positions. In addition, not many efforts aimed to solve the
effect of shoulder angle on elbow angle estimation. Fougner et al.
(2011) used sEMG sensors and two accelerometers to eliminate the
effect of arm position and shoulder angle on sEMG pattern recognition,
but like most previous studies, this study mainly focused on different
arm positions (only three different shoulder angle were considered).
Boschmann et al. (Boschmann and Platzner, 2013) applied a high
density electrode array to reduce the shoulder angle effect in distin-
guishing different hand and wrist movements, but this method using an
electrode array (including 96 sEMG sensors) cost too much.

In this paper, we firstly evaluate the adverse effect of shoulder angle
variations on elbow angle estimation. For solving this problem, we
propose four methods:

1) Method one: using a training set including all shoulder angles'
training data to train model.

2) Method two: adding two shoulder muscles's sEMG as additional
inputs. Shoulder angle value can be estimated by shoulder muscles's
sEMG. This lets the estimation model include more kinds of training
data, and increases the input vectors' space dimensionality.

3) Method three: a two-step method using arm muscles' sEMG and two
shoulder muscles' sEMG. There are two steps in this method: in step
1, the shoulder muscles' sEMG data are classified to get a specific
shoulder angle; in step 2, the corresponding pre-trained model in the
evaluation stage using the same shoulder angle's training data is
used for elbow angle estimation.

4) Method four: a two-step method using arm muscles' sEMG and
measured shoulder angle value by a motion sensor. There are two
steps in this method: in step 1, the motion sensor data are classified
to get a specific shoulder angle; in step 2, the corresponding pre-
trained model in the evaluation stage using the same shoulder an-
gle's training data is used for elbow angle estimation.

2. Methods

2.1. Subjects

13 male able-bodied subjects (age range: 26 ± 3 years, height range:
172 ± 6 cm, weight range: 65 ± 5 kg) were volunteered to participate in
our experiment. The ethical committee of Zhejiang University reviewed
our experimental protocol and approved it. All subjects were informed
not to perform any intense movements to avoid fatigue on the day of
experiment, and they all signed the informed consents prior to the ex-
periment.

2.2. Experimental procedure

When subjects arrived, one experimenter helped them attach the
sensors (sEMG sensors, motion sensor and goniometer) on the right arm
and ensured that the signals were normal according to the signal check
procedures from Konrad (2005). The signal check procedures included
the skin impedance test (impedance range keeps in 1-5Kohm) and the
visual inspection of the raw EMG baseline (the average noise level
should be located at 1–3.5 μV, and the baseline should remain at the
zero line). Then, subjects sit on a chair to perform flexion-extension
movements of elbow in the sagittal plane (Fig. 1(a)). The elbow angle
range (α2) was from ∘0 to ∘90 . ∘0 represented full extension, and ∘90

Fig. 1. Experimental setup (a) and electrode position (b). Shoulder angle is represented by α1. Elbow angle is represented by α2. The angle between motion sensor's z-
axis and natural coordinates' z-axis is represented by α3. The motion sensor was used to measure the shoulder angle in Method four, which was placed about 10 cm
from the elbow joint on the midline of the upper arm. The goniometer was made by ourselves to acquire the actual elbow angle. It consists of a potentiometer, two
metal bars, a rotation axis and four belts.

Z. Tang et al. International Journal of Industrial Ergonomics 68 (2018) 280–289

281



Download English Version:

https://daneshyari.com/en/article/11005564

Download Persian Version:

https://daneshyari.com/article/11005564

Daneshyari.com

https://daneshyari.com/en/article/11005564
https://daneshyari.com/article/11005564
https://daneshyari.com

