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a b s t r a c t

In this paper, we revisit the quantitative stability of multistage stochastic programs. Different from the
single calm modification used in Küchler (2008), we introduce two types of calm modifications which
leads to a much simpler proof and tighter upper bound for the difference of optimal values of multistage
stochastic programs under different stochastic processes than those of Küchler (2008). In addition, we
avoid those restrictive assumptions in Küchler (2008) and the filtration distance in Heitsch et al. (2006).
Finally, we illustrate our results with two numerical examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following T -stage (T ≥ 2) stochastic linear
program (see [6,12]):

inf
x1∈D1

⟨c1, x1⟩ + E
[

inf
x2∈D2(x1,ξ2)

⟨
c2(ξ2), x2

⟩
+ E

[
inf

x3∈D3(x2,ξ3)

⟨
c3(ξ3), x3

⟩
+ · · · + E

[
inf

xT∈DT (xT−1,ξT )

⟨
cT (ξT ), xT

⟩]]]
,

(1)

where ⟨·, ·⟩ denotes the inner product in finite dimensional Hilbert
space. ξ = (ξt )Tt=1 ∈ LT (Ω,F,P;RsT ) is a RsT -valued stochastic
process defined on the probability space (Ω,F,P), with finite
T th order absolute moments, and x = (xt )Tt=1 is the sequence
of decision variables. We use bold letters, for example ξ or x, to
denote random vectors in contrast to their realizations ξ or x. The
corresponding filtration of ξ is {Ft}

T
t=1, defined by Ft = σ (ξt )

for t = 1, 2 . . . , T , here ξt := (ξ1, ξ2, . . . , ξt ) and especially
ξT = ξ. The similar notation is adopted for other variables. Of
course, we have that {∅, Ω} = F1 ⊆ F2 ⊆ · · · ⊆ FT = F .
Specially, F1 = {∅, Ω} indicates that ξ1 = ξ1 is deterministic. For
t = 1, 2, . . . , T , we use Ξt and Ξ t to denote the support sets of ξt
and ξt , respectively. The corresponding probability measures are
denoted by Pt and Pt . Cost vectors c1 ∈ Rn and ct : Ξt → Rn, t =

2, . . . , T , are affinely linear mappings with respect to ξt . D1 ⊆ Rn
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and the feasible solution multifunctions Dt : Xt−1 × Ξt ⇒ Rn are
defined by

Dt (xt−1, ξt ) = {xt ∈ Xt ⊆ Rn
: Atxt + Bt (ξt )xt−1 = ht (ξt )}, (2)

where Xt are nonempty polyhedral sets; the recourse matrix At ∈

Rm×n, the technology matrix Bt : Ξt → Rm×n and the right-hand
side vector ht : Ξt → Rm are also affinely linear mappings with
respect to ξt for t = 2, 3, . . . , T . The affine linearity of c(ξ ) :=

(c1(ξ1), c2(ξ2), . . . , cT (ξT )), means that

∥c(ξ ) − c(ξ̂ )∥ ≤ K∥ξ − ξ̂∥, ∥c(ξ )∥ ≤ K max{1, ∥ξ∥}

hold for some K ≥ 1 and any ξ, ξ̂ ∈ Ξ T .
In the last decade, the stability analysis of multistage stochastic

programs has been investigated in a number of works, see, for
example, [2,4,5,10,12] and the references therein. The quantitative
stability results have a significant impact on suitable methods for
approximating the underlying continuous data process, which in
returnmake it possible for us to solve originalmultistage stochastic
programs by solving large scale deterministic optimization prob-
lems.

In early work [3], the authors studied the quantitative stability
by assuming implicitly that filtrations of the original and approxi-
mate stochastic processes are consistent. To extend this result to a
general situation where the filtration is also perturbed, Römisch
and his coauthors employed the so-called filtration distance to
describe the variation of filtrations in [4]. The main reason for
introducing the filtration distance was that they adopted the fea-
sible solutions in the α-level set to describe the optimal values
under different stochastic processes. Then, Eichhorn and Römisch
extended in [2] the risk-neutral result in [4] to the risk-averse
case with polyhedral risk measures introduced in [1]. Considering
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the computational difficulty of filtration distances, Küchler used
in [5] some strong recursive assumptions to avoid the filtration
distance, and obtained the quantitative stability assertion for a
class of measurable perturbations. For more information on this
topic, we refer readers to [7,10,11] and the references therein.

In this paper, we aim at simplifying the proof and strengthening
the quantitative stability conclusion in [5] by adopting two types
of calm modifications. Our quantitative stability result also avoids
the tricky filtration distance. For these purposes, we adopt the
following notation in what follows.

ξ t
 := max1≤i≤t ∥ξi∥, here

∥ξi∥ is the Euclidean norm in Rs for 1 ≤ i ≤ t and t = 1, 2, . . . , T .
Analogously, we define

xt = max1≤i≤t ∥xi∥ and ∥xi∥ is the
Euclidean norm in Rn for 1 ≤ i ≤ t and t = 1, 2, . . . , T . For
sets S1, S2 ⊆ Rn, d(S1, S2) := sups1∈S1d(s1, S2), here d(s1, S2) :=

infs2∈S2 ∥s1 − s2∥ and dH (S1, S2) := max{d(S1, S2), d(S2, S1)}. υ(ξ)
denote the optimal value of problem (1) under the stochastic
process ξ.

We need the following Lipschitzian results about Dt , t =

2, . . . , T , which can be found in [8, Example 9.35].

Proposition 1.1. For Dt (xt−1, ξt ), t = 2, . . . , T , defined in (2), the
following assertions hold:

dH (Dt (xt−1, ξt ),Dt (x̂t−1, ξt )) ≤ Bmax{1, ∥ξt∥}
x̂t−1 − xt−1

 ,

dH (Dt (xt−1, ξt ),Dt (xt−1, ξ̂t )) ≤ Bmax{1, ∥xt−1∥}∥ξ̂t − ξt∥

for some constant B > 0.

If we define F (x, ξ) =
∑T

t=1

⟨
ct (ξt ), xt

⟩
, model (1) can be equiv-

alently rewritten as (see, for example, [4,5,8])

min{E[F (x, ξ)] : x ∈ D(ξ)},

whereD(ξ) is a collection of decisionprocesses x = (x1, x2, . . . , xT )
with x1 ∈ D1 and measurable mappings xt ∈ Dt (xt−1, ξt ) for
t = 2, . . . , T .

Another way to reformulate the multistage stochastic linear
program (1) is the dynamic programming method. Concretely, let
Qt : Xt−1 × Ξ t

→ R denote the recourse function at the tth stage,
which is defined recursively by

Qt (xt−1, ξ
t )

= inf
xt∈Dt (xt−1,ξt )

⟨ct (ξt ), xt⟩ + E
[
Qt+1(xt , ξt+1)|ξt = ξ t] (3)

for t = T , T − 1, . . . , 1, here QT+1 := 0 and x0 := 1. Then problem
(1) is equivalent to

min
x1∈D1

⟨c1, x1⟩ + E
[
Q2(x1, ξ2)

]
.

Of particular interest in this paper, we consider the following
measurable perturbation of ξ.

Definition 1.2 (Approximation of Stochastic Process, [5]). A stochas-
tic process ξ̃ on the probability space (Ω,F,P) is called an approx-
imation of ξ, if there exist measurable mappings ft : Ξ t

→ Ξt for
t = 1, 2, . . . , T , such that the following conditions are satisfied:
(a) ξ̃t = ft (ξt ) for t = 1, 2, . . . , T ;
(b) f T (Ξ T ) ⊆ Ξ T ;
(c) f1(ξ1) = ξ1 for every ξ1 ∈ Ξ1;
(d) f T (ξT ) ∈ LT (Ω,F,P;RsT ).
Here, f t (ξt ) := (f1(ξ1), f2(ξ2), . . . , ft (ξt )) for t = 1, 2, . . . , T .

To guarantee that the feasible solution set in each stage under
the perturbed stochastic process ξ̃ is nonempty, we need the fol-
lowing commonly used assumption.

Assumption 1 (Relatively Complete Recourse Locally Around ξ).
There exists a δ > 0 such that for any perturbed stochastic process
ξ̃ with ∥ξ̃−ξ∥ ≤ δ, x1 ∈ D1 and xτ ∈ Dτ (xτ−1, ξ̃τ ), τ = 2, . . . , t−1,
Dt (xt−1, ξ̃t ) is nonempty Pt-a.s. for t = 2, 3, . . . , T .

The relatively complete recourse assumption is widely used in
the stability analysis of stochastic programs, see the review [9]
for two-stage stochastic programming problems and [2,4] for the
multistage case.

To continue our discussion, in the same way as that in
[5, Assumption 2.3], we introduce the following growth condition.

Assumption 2. There exists a positive number C ≥ 1 such that,
for every measurable mapping xt−1 : Ξ t−1

→ Xt−1, there exists
an optimal solution xt (ξt ) to problem (3) such thatxt (ξt ) ≤ C max

{
1,

xt−1(ξt−1)
}

· max
{
1,

ξt
}

, Pt
− a.s. (4)

for t = 2, 3, . . . , T . Specially, we have ∥x1∥ ≤ C for any x1 ∈ D1.

Remark 1.3. Assumption 2 holds automatically when Xt , 1 ≤ t ≤

T , are bounded. From Assumption 2, there exists a subset Ξ̄ t
⊆ Ξ t

with Pt (Ξ t
\ Ξ̄ t ) = 0, such that for any ξ t

∈ Ξ̄ t , we havext (ξ t )
 ≤ C max

{
1,

xt−1(ξ t−1)
}

· max
{
1,

ξ t
}

= C max
xt−1(ξ t−1)

 · max
{
1,

ξ t
}

≤ C2 max
{
1,

xt−2(ξ t−2)
}

· max
{
1,

ξ t−1
}

· max
{
1,

ξ t
}

≤ C2
xt−2(ξ t−2)

 · max
{
1,

ξ t
}2

.

Then, we recursively obtainxt (ξt ) ≤ C t max
{
1,

ξt
}t−1

, Pt
− a.s., t = 2, . . ., T . (5)

2. Main results

We present our main results about quantitative stability of
multistage stochastic linear programswhen the original stochastic
process is perturbed by an approximation defined in Definition 1.2.
To this end, we introduce the following two types of calm modifi-
cations.

Definition 2.1 (Calm Modifications). For an optimal solution x∗

under stochastic process ξ satisfying the growth condition (4), we
call

(i) x̄∗(ξ̂) = (x̄∗

1, x̄2(ξ̂
2
), . . . , x̄T (ξ̂

T
)) the class I calm modification

under stochastic process ξ̂, if it is defined by

x̄∗

1 = x∗

1, x̄∗

t (ξ̂
t
) ∈ argmin

z∈Dt (x̄∗
t−1(ξ̂

t−1
),ξ̂t )

z − x∗

t (f
t (ξt ))

 ,

t = 2, . . . , T ;

(ii) ¯̄x
∗

(ξ̂) = ( ¯̄x
∗

1,
¯̄x2(ξ̂

2
), . . . , ¯̄xT (ξ̂

T
)) the class II calmmodification

under stochastic process ξ̂, if it is defined by

¯̄x
∗

1 = x∗

1,
¯̄x
∗

t (ξ̂
t
) ∈ argmin

z∈Dt ( ¯̄x
∗

t−1(ξ̂
t−1

),ξ̂t )

z − x∗

t (ξ
t )
 ,

t = 2, . . . , T .

The class I calm modification can also be found in [5], where it
is called the ‘calm modification’. It is known from Assumption 1
that for a sufficiently small perturbation ξ̂ with ∥ξ̂ − ξ∥ ≤ δ,
the class I calm modification always exists, so does the class II
calm modification when ∥ξ̂ − f (ξ)∥ ≤ δ. In addition, we know
from [8, Theorem 14.37] that both x̄∗ and ¯̄x

∗

can be selected to
be measurable. From the viewpoint of measurability, we know
that {ft}Tt=1 should be measurable too. If we consider a general
perturbation to the stochastic process ξ as that in [4], it might be
impossible to select ameasurable class I calmmodification and the
complex filtration distance has to be adopted. In [5, Example A.3],
the author illustrated that the measurability of f is indispensable
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