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a b s t r a c t

It is well known that every Eulerian orientation of an Eulerian 2k-edge connected (undirected) graph is
strongly k-edge connected. A long-standing goal in the area is to obtain analogous results for other types
of connectivity, such as node connectivity. We show that every Eulerian orientation of the hypercube of
degree 2k is strongly k-node connected.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The hypercube Qk is a k-regular graph on 2k nodes that can
be constructed by labeling the nodes by the 2k subsets of the set
{1, 2, . . . , k} and placing an edge between two nodes whenever
the two node labels (i.e., the two subsets) differ in a single element.
Hypercubes (and their variants) are useful in computer communi-
cation networks, VLSI design, etc., and there is extensive literature
in this area, see [3,5,8,13,15].

An orientation of an (undirected) graph G = (V , E) is a di-
rected graph D = (V , A) such that each edge {v, w} ∈ E is replaced
by exactly one of the arcs (v, w) or (w, v).

Orientations of hypercubes have applications in practical do-
mains such as broadcasting in computer communication networks
and the design of parallel computer architectures. The connectivity
properties of hypercubes andorientations of hypercubes have been
studied, see [3,8,15], and orientations of hypercubes that achieve
the maximum possible node connectivity are of interest, see [8,
Proposition 9].

Our key result states that the optimal node connectivity among
orientations of Q2k can be achieved in a trivial way: pick any
orientation such that the indegree is equal to the outdegree at
every node.

1.1. Smooth orientations and Eulerian orientations

For a node v of a directed graph, we use din(v) to denote the
number of arcs with head v; similarly, dout (v) denotes the number
of arcs with tail v.
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An orientation of an (undirected) graph G is called smooth if
the absolute value of the difference between the indegree and the
outdegree of every node is at most one, that is,

⏐⏐din(v)− dout (v)
⏐⏐ ≤

1, ∀v ∈ V (G). A smooth orientation of an Eulerian graph G is
called an Eulerian orientation; such an orientation satisfies din(v) =

dout (v), ∀v ∈ V (G). Moreover, it can be seen that for every Eulerian
orientation, for every subset of the nodes W , the number of arcs
leaving W is equal to the number of arcs entering W , see [4, Ch.
6.1]. Therefore, every Eulerian orientation of a 2k-edge connected
Eulerian graph results in a directed graph that is k-edge connected.
An Eulerian orientation of an Eulerian graph can be found by
orienting the edges of each connected component according to an
Euler tour.

1.2. Nash-Williams’ results and possible extensions

A well-known result of Nash-Williams says that the edges of
a k-edge connected graph can be oriented such that the resulting
directed graph is ⌊

k
2⌋-edge connected [14], [2, Ch. 9]. A long-

standing goal in the area is to extend Nash-Williams’ result to
obtain analogous results for other types of connectivity, such as
node connectivity and element connectivity, see [6,11,12,16,17].

1.3. Our results

We show that every Eulerian orientation of the hypercube Q2k
is strongly k-node connected; recall that a directed graph is called
strongly k-node connected if it has ≥ k + 1 nodes and the deletion
of any set of ≤ (k − 1) nodes results in a strongly-connected
directed graph.

Let us mention that there are easy inductive constructions that
prove that there exists a ‘‘good orientation’’ for a hypercube of
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even degree; we describe one such construction in Fact 1. For
hypercubes of odd degree, the smoothness condition does not
guarantee ‘‘good orientations’’; for example, there exist smooth
orientations of Q3 that are not strongly connected.

2. Preliminaries

This section has some definitions and preliminary results. Also,
see [4] for standard definitions and notation.

The hypercube Qk is the Cartesian product of k copies of K2,
see [10]. There are other constructions ofQk, andwe describe three
of them.

(i) Label 2k nodes by k-bit binary strings, and place an edge
between two nodes whenever their labels differ in exactly
one bit (i.e., the Hamming distance between the two strings
is one).

(ii) Label 2k nodes by the 2k subsets of a setwith k elements, and
place an edge between two nodes whenever the two node
labels (i.e., the two subsets) differ in a single element.

(iii) Take two disjoint hypercubes Qk−1, and place an edge be-
tween corresponding pairs of nodes in the two copies of
Qk−1; thus, the edges between the two copies of Qk−1 form
a perfect matching.

By a d-hypercube we mean a hypercube of degree d.
For a node set S of a graph G, we use NG(S) to denote the set of

neighbors of S, thus, NG(S) = {w ∈ V (G) − S : ∃v ∈ S such that
{v, w} ∈ E(G)}.

Fact 1. For each integer k ≥ 1, there exists an Eulerian orientation of
Q2k that is strongly k-node connected.

Proof. Let k ≥ 1be an integer.We sketch an inductive construction
that gives a strongly (k + 1)-node connected Eulerian orientation
for the hypercube Q2k+2. Observe that any Eulerian orientation of
Q2 (the 4-cycle) is strongly 1-connected. Assume (by induction)
that Q2k has a strongly k-node connected Eulerian orientation.
View the (2k+2)-hypercube as four 2k-hypercubes (i.e., four copies
of Q2k) together with 22k 4-cycles, where each of these 4-cycles
Ci contains a distinct node i of the first copy of Q2k as well as
the image of i in each of the other three copies of Q2k. By the
induction hypothesis, there exists a strongly k-node connected
Eulerian orientation for Q2k. Fix such an orientation for each of the
four copies of Q2k. Moreover, for each of the 4-cycles Ci, fix any
Eulerian orientation of Ci. Let D be the resulting directed graph
(i.e., orientation of Q2k+2). We claim that D is strongly (k + 1)-
node connected. To see this, consider any set of nodes Z of size≤ k.
Suppose that one of the four copies ofQ2k contains Z; then it is clear
that each of the other three copies of Q2k is strongly connected in
D − Z , and hence, (using the 22k oriented 4-cycles of D) it can be
seen that D − Z is strongly connected. Otherwise, each of the four
copies of Q2k has ≤ k − 1 nodes of Z , hence, the removal of Z from
any one of the four copies of Q2k results in a strongly connected
directed graph; again (using the 22k oriented 4-cycles of D), it can
be seen that D − Z is strongly connected. ■

3. Eulerian orientations of 2k-hypercubes

This section has our results and proofs. In this section, we
assume that k is a positive integer.

Theorem 2. Let G be a 2k-regular 2k-node connected graph such
that for every set of nodes S with 1 ≤ |S| ≤ |V (G)|/2 we have
|NG(S)| > min{k2 − 1, (k − 1)(|S| + 1)}. Then every Eulerian
orientation of G is strongly k-node connected.

Proof. LetD denote an arbitrary Eulerian orientation of G. (In what
follows, when we refer to the orientation of an edge of G we mean
the corresponding directed edge of D.) By way of contradiction,
suppose that D is not strongly k-node connected. Then there is a
node set Z of size ≤ k − 1 whose deletion from D results in a
directed graph that has a partition (S, S̄) of its node set V (G) − Z
such that both S, S̄ are nonempty and the edges of G − Z in this
cut either are all oriented from S to S̄ or are all oriented from S̄
to S. We fix the notation such that |S| ≤ |S̄|. (Now, observe that |S|
satisfies the condition stated in the hypothesis.)Moreover,without
loss of generality, we assume that the edges are oriented from S
to S̄ (the arguments are similar for the other case). Observe that
G − Z has ≥ |NG(S)| − |Z | edges in the cut (S, S̄). Thus, D has
≥ |NG(S)| − |Z | edges oriented out from S (and into S̄). Consider
the cut (S, S̄ ∪ Z) of G, and observe that it has ≤ min{k|Z |, |S| |Z |}

edges oriented into S (and out of Z), because: (i) all such edges
are incident to nodes of Z and only k of the 2k edges incident
to a node w ∈ Z are oriented out of w; (ii) each such edge is
incident to a node s ∈ S and a node w ∈ Z (and each pair s, w
contributes at most one such edge). Thus, the cut (S, S̄∪Z) of G has
≥ |NG(S)| − |Z | ≥ |NG(S)| − (k − 1) edges oriented out of S and
≤ min{k|Z |, |S| |Z |} ≤ min{k(k − 1), |S|(k − 1)} edges oriented
into S; the hypothesis (in the theorem) implies that the former
quantity is greater than the latter quantity. This is a contradiction:
in an Eulerian orientation of an Eulerian graph, every cut has the
same number of outgoing edges and incoming edges. ■

In the next subsection we show that hypercubes of even degree
satisfy all the conditions stated in Theorem 2; this gives our main
result.

3.1. Bounds for the 2k-hypercube

The main goal of this subsection is to show that the hypercube
Q2k satisfies the inequalities stated in Theorem 2. Our analysis has
two parts depending on the size m of the set S ⊆ V (Q2k) (in
the statement of Theorem 2); the first part (Fact 4) applies for
1 ≤ m ≤ k+1 and it follows easily; the second part (Fact 5) applies
for k + 2 ≤ m ≤ 22k−1 and it follows by exploiting properties of
the hypercube. In more detail, in the second part we show that the
minimum of |NQ2k (S)| over all sets S ⊆ V (Q2k) of size m (where
k + 2 ≤ m ≤ 22k−1) is > k2 − 1; our proof avoids elaborate
computations by exploiting structural properties of hypercubes; a
key point is to focus on a subgraph of the hypercube induced by
the set of binary strings of Hamming weight i and the set of binary
strings of Hammingweight i−1 (see Claim 6 in the proof of Fact 5).

We follow the notation of [1] and use bv(m,Q2k) to denote
min{|NQ2k (S)| : S ⊆ V (Q2k), |S| = m}; thus, bv(m,Q2k) denotes the
minimum over all node sets S ⊆ V (Q2k) of size m of the number
of neighbors of S. For the sake of exposition, we mention that the
node sets S with |NQ2k (S)| = bv(m,Q2k) (i.e., the minimizers of
bv(m,Q2k)) are Hamming balls (see [1, page 126]), and the formula
for bv(m,Q2k) (stated in Theorem 3) is obtained by computing the
minimum number of neighbors of such sets. Harper, see [9] and
also see [7], proved the following result:

Theorem 3 (Theorem 4, Ch. 16, [1]). Every integer m, 1 ≤ m ≤

22k
− 1, has a unique representation in the form

m =

2k∑
i=r+1

(
2k
i

)
+ m′, 0 < m′

≤

(
2k
r

)
,

m′
=

r∑
j=s

(
mj

j

)
, 1 ≤ s ≤ ms < ms+1 < · · · < mr .

Moreover,

bv(m,Q2k) =

(
2k
r

)
− m′

+

r∑
j=s

(
mj

j − 1

)
.
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