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1. Introduction

The hypercube Qy is a k-regular graph on 2 nodes that can
be constructed by labeling the nodes by the 2* subsets of the set
{1,2,...,k} and placing an edge between two nodes whenever
the two node labels (i.e., the two subsets) differ in a single element.
Hypercubes (and their variants) are useful in computer communi-
cation networks, VLSI design, etc., and there is extensive literature
in this area, see [3,5,8,13,15].

An orientation of an (undirected) graph G = (V,E) is a di-
rected graph D = (V, A) such that each edge {v, w} € E is replaced
by exactly one of the arcs (v, w) or (w, v).

Orientations of hypercubes have applications in practical do-
mains such as broadcasting in computer communication networks
and the design of parallel computer architectures. The connectivity
properties of hypercubes and orientations of hypercubes have been
studied, see [3,8,15], and orientations of hypercubes that achieve
the maximum possible node connectivity are of interest, see [8,
Proposition 9].

Our key result states that the optimal node connectivity among
orientations of Q can be achieved in a trivial way: pick any
orientation such that the indegree is equal to the outdegree at
every node.

1.1. Smooth orientations and Eulerian orientations

For a node v of a directed graph, we use d"(v) to denote the
number of arcs with head v; similarly, d®“!(v) denotes the number
of arcs with tail v.
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An orientation of an (undirected) graph G is called smooth if
the absolute value of the difference between the indegree and the
outdegree of every node is at most one, that is, |di”(v) - d”“f(v)| <
1, Vv € V(G). A smooth orientation of an Eulerian graph G is
called an Eulerian orientation; such an orientation satisfies d"(v) =
d“(v), Yv € V(G). Moreover, it can be seen that for every Eulerian
orientation, for every subset of the nodes W, the number of arcs
leaving W is equal to the number of arcs entering W, see [4, Ch.
6.1]. Therefore, every Eulerian orientation of a 2k-edge connected
Eulerian graph results in a directed graph that is k-edge connected.
An Eulerian orientation of an Eulerian graph can be found by
orienting the edges of each connected component according to an
Euler tour.

1.2. Nash-Williams’ results and possible extensions

A well-known result of Nash-Williams says that the edges of
a k-edge connected graph can be oriented such that the resulting
directed graph is L%J-edge connected [14], [2, Ch. 9]. A long-
standing goal in the area is to extend Nash-Williams’ result to
obtain analogous results for other types of connectivity, such as
node connectivity and element connectivity, see [6,11,12,16,17].

1.3. Our results

We show that every Eulerian orientation of the hypercube Qy
is strongly k-node connected; recall that a directed graph is called
strongly k-node connected if it has > k + 1 nodes and the deletion
of any set of < (k — 1) nodes results in a strongly-connected
directed graph.

Let us mention that there are easy inductive constructions that
prove that there exists a “good orientation” for a hypercube of
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even degree; we describe one such construction in Fact 1. For
hypercubes of odd degree, the smoothness condition does not
guarantee “good orientations”; for example, there exist smooth
orientations of Q3 that are not strongly connected.

2. Preliminaries

This section has some definitions and preliminary results. Also,
see [4] for standard definitions and notation.

The hypercube Q is the Cartesian product of k copies of K5,
see [10]. There are other constructions of Qy, and we describe three
of them.

(i) Label 2¥ nodes by k-bit binary strings, and place an edge
between two nodes whenever their labels differ in exactly
one bit (i.e., the Hamming distance between the two strings
is one).

(ii) Label 2¥ nodes by the 2 subsets of a set with k elements, and
place an edge between two nodes whenever the two node
labels (i.e., the two subsets) differ in a single element.

(iii) Take two disjoint hypercubes Qi_1, and place an edge be-
tween corresponding pairs of nodes in the two copies of
Qx_1; thus, the edges between the two copies of Q;_; form
a perfect matching.

By a d-hypercube we mean a hypercube of degree d.

For a node set S of a graph G, we use Ng(S) to denote the set of
neighbors of S, thus, Ng(S) = {w € V(G) — S : Jv € S such that
{v, w} € E(G)}.

Fact 1. For each integer k > 1, there exists an Eulerian orientation of
Qo that is strongly k-node connected.

Proof. Letk > 1be aninteger. We sketch an inductive construction
that gives a strongly (k 4+ 1)-node connected Eulerian orientation
for the hypercube Qy. Observe that any Eulerian orientation of
Q, (the 4-cycle) is strongly 1-connected. Assume (by induction)
that Qy; has a strongly k-node connected Eulerian orientation.
View the (2k+2)-hypercube as four 2k-hypercubes (i.e., four copies
of Qo) together with 22 4-cycles, where each of these 4-cycles
C; contains a distinct node i of the first copy of Qy as well as
the image of i in each of the other three copies of Q. By the
induction hypothesis, there exists a strongly k-node connected
Eulerian orientation for Q.. Fix such an orientation for each of the
four copies of Q. Moreover, for each of the 4-cycles G, fix any
Eulerian orientation of C;. Let D be the resulting directed graph
(i.e., orientation of Q7). We claim that D is strongly (k + 1)-
node connected. To see this, consider any set of nodes Z of size < k.
Suppose that one of the four copies of Q, contains Z; then it is clear
that each of the other three copies of Qy is strongly connected in
D — Z, and hence, (using the 22* oriented 4-cycles of D) it can be
seen that D — Z is strongly connected. Otherwise, each of the four
copies of Qy; has < k — 1 nodes of Z, hence, the removal of Z from
any one of the four copies of Q, results in a strongly connected
directed graph; again (using the 2% oriented 4-cycles of D), it can
be seen that D — Z is strongly connected. H

3. Eulerian orientations of 2k-hypercubes

This section has our results and proofs. In this section, we
assume that k is a positive integer.

Theorem 2. Let G be a 2k-regular 2k-node connected graph such
that for every set of nodes S with 1 < |S| < |V(G)|/2 we have
INg(S)] > min{k? — 1, (k — 1)(|S| + 1)}. Then every Eulerian
orientation of G is strongly k-node connected.

Proof. Let D denote an arbitrary Eulerian orientation of G. (In what
follows, when we refer to the orientation of an edge of G we mean
the corresponding directed edge of D.) By way of contradiction,
suppose that D is not strongly k-node connected. Then there is a
node set Z of size < k — 1 whose deletion from D results in a
directed graph that has a partition (S, S) of its node set V(G) — Z
such that both S, S are nonempty and the edges of G — Z in this
cut either are all oriented from S to S or are all oriented from S
to S. We fix the notation such that |S| < |S|. (Now, observe that |S|
satisfies the condition stated in the hypothesis.) Moreover, without
loss of generality, we assume that the edges are oriented from S
to S (the arguments are similar for the other case). Observe that
G — Z has > |Ng(S)| — |Z| edges in the cut (S, S). Thus, D has
> |Ng(S)| — |Z| edges oriented out from S (and into S). Consider
the cut (S, S U Z) of G, and observe that it has < min{k|Z|, |S||Z|}
edges oriented into S (and out of Z), because: (i) all such edges
are incident to nodes of Z and only k of the 2k edges incident
to a node w € Z are oriented out of w; (ii) each such edge is
incident to anode s € S and a node w € Z (and each pair s, w
contributes at most one such edge). Thus, the cut (S, SUZ) of G has
> |Ng(S)| — |Z] = |Ng(S)| — (k — 1) edges oriented out of S and
< min{k|Z|, |S||Z]} < min{k(k — 1), |S|(k — 1)} edges oriented
into S; the hypothesis (in the theorem) implies that the former
quantity is greater than the latter quantity. This is a contradiction:
in an Eulerian orientation of an Eulerian graph, every cut has the
same number of outgoing edges and incoming edges. B

In the next subsection we show that hypercubes of even degree
satisfy all the conditions stated in Theorem 2; this gives our main
result.

3.1. Bounds for the 2k-hypercube

The main goal of this subsection is to show that the hypercube
Qo satisfies the inequalities stated in Theorem 2. Our analysis has
two parts depending on the size m of the set S C V(Qy) (in
the statement of Theorem 2); the first part (Fact 4) applies for
1 < m < k+1and it follows easily; the second part (Fact 5) applies
for k +2 < m < 221 and it follows by exploiting properties of
the hypercube. In more detail, in the second part we show that the
minimum of |Ng,, (S)| over all sets S € V(Qux) of size m (where
k+2 < m < 22)1)is > k* — 1; our proof avoids elaborate
computations by exploiting structural properties of hypercubes; a
key point is to focus on a subgraph of the hypercube induced by
the set of binary strings of Hamming weight i and the set of binary
strings of Hamming weight i — 1 (see Claim 6 in the proof of Fact 5).

We follow the notation of [1] and use b,(m, Q) to denote
min{|Ng,, (S)| : S € V(Qa), |IS| = m}; thus, b,(m, Q) denotes the
minimum over all node sets S C V(Qy) of size m of the number
of neighbors of S. For the sake of exposition, we mention that the
node sets S with |Ng,, (S)| = b,(m, Q) (i.e., the minimizers of
b,(m, Qz)) are Hamming balls (see [ 1, page 126]), and the formula
for b,(m, Qy) (stated in Theorem 3) is obtained by computing the
minimum number of neighbors of such sets. Harper, see [9] and
also see [7], proved the following result:

Theorem 3 (Theorem 4, Ch. 16, [1]). Every integer m, 1 < m <
2%k — 1, has a unique representation in the form

2k ) . (2
> C)Ems o< < (77,

m =
i=r+1
r m
m = Z( .j>, 1<s<mg<meyq < <my.
Jj=s J
Moreover,
2k 4 m;
b,(m, = -m ).
) = (%) +jzsj(j_1)
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