ELSEVIER

Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Quantum-chemical modeling of the charge transport properties of the ammonium form of Nafion

T.S. Zyubina*, A.I. Prokhorov, A.S. Zyubin*, E.A. Sanginov, Yu.A. Dobrovolsky, V.M. Volokhov

Institute of Problems of Chemical Physics of RAS, 142432, Chernogolovka, Russia

ARTICLE INFO

Keywords: Quantum-chemical modeling Nafion NH_4^+ -migration

ABSTRACT

Quantum-chemical modeling of structure and cation migration barriers in Nafion-like ammonium substituted ionomers plasticized with dimethyl sulfoxide (DMSO) was investigated by ab initio calculations. We use B3LYP/6-31G* hybrid density functional methods and the PBE/PAW method taking into account the gradient corrections and periodic boundary conditions. It is shown that at a low content of DMSO ($n \le 4$), NH₄⁺ cation removal from the SO₃⁻-group occurs with a significant energy cost (> 0.4 eV). As the amount of DMSO increases, both the separation energy and the barriers to ammonium ion migration decrease to 0.1–0.2 eV. Ab initio molecular dynamics modeling demonstrated that at a moderate temperature (~350 K), there is a rapid (~15 ps) redistribution of the DMSO molecules between the Nafion chains located at distances ≤ 2 nm.

1. Introduction

Ion-conducting polymeric membranes are key components of various solid-state electrochemical energy conversion devices (low-temperature fuel cells, electrochemical sensors, metal-ion batteries) [1–5]. The most common and commercially available ion-conducting membranes are perfluorinated sulfonic acid ion-exchange membranes of the Nafion type from the Du Pont company. Polymer electrolytes based on Nafion have a number of advantages such as high ionic conductivity (up to 10^{-1} S/cm) and high chemical and thermal resistance [1]. Recently, Nafion-like membranes in various cationic forms plasticized with organic solvents have attracted considerable interest [6-18]. This interest is due to the search for new materials with high transport properties, high capacitance characteristics and a wide window of electrochemical stability to create more energy-intensive and efficient electrochemical current sources. In this regard, it is of interest to investigate the plasticized Nafion membranes in NH4+ form, for which the conductivity is comparable to that of the proton and lithium-ion membrane forms and significantly exceeds the conductivity of the Nafion membrane in other ionic forms of alkali metals [7,14,18]. However, the origins of the high ionic conductivity have not been fully elucidated.

Therefore, this work seeks to carry out a quantum-chemical study of the effect of the amount of the aprotonic plasticizer DMSO $[OS(CH_3)_2]$ on the transport properties of the ammonium form of Nafion like electrolyte and on the formation of conducting channels during the thermal motion of the DMSO molecules in Nafion.

Quantum-chemical modeling was first carried out for model clusters in the framework of the B3LYP hybrid density functional [19,20] and the 6-31G* basis set using the GAUSSIAN software package [21]. To simulate the studied systems with an infinite polymer chain of Nafion, the approach from [22,23] based on the periodic boundary conditions and PBE functional [24] with a projected plane waves PAW [25] basis set and corresponding pseudopotential was used. The energy cutoff (E_c) was equal to 400 and 800 eV. The MD-VASP approach (15 ps) was used for modeling in the framework of non-empirical molecular dynamics. In this case, the same algorithms that were used for the usual optimization of structure are used but with the energy cutoff $E_c = 200$ eV. During the calculations, the time step was kept equal to 0.0010-0.0015 ps. Thermalization was performed in a canonic (Nose) ensemble. The external pressure was set to 1 atm throughout the simulations. The temperature was changed during the thermalization process. The initial temperature of the system was $T_0 = 0 \text{ K}$, and the system was heated to $T_1 = 350 \text{ K}$ over 1.5 ps at which point the system was equilibrated for 10-15 ps. The calculations were carried out using the VASP (Vienna ab initio simulation package) program [26-29].

The model used in this work was constructed as 33-143 atom clusters of solvated ammonium salt of perfluorinated sulfonic acid $(CF_3)_2CFO$ $(CF_2)_2SO_3$ $^{^{\circ}}NH_4$ $^{^{+*}}n((CH_3)_2SO)$, where n=1–12 (called $NH_4Nafion5*nDMSO$, Fig. 1) corresponding to the side branches of the Nafion ionomer. For the simulation of the interaction between the

E-mail address: zyubin@icp.ac.ru (A.S. Zyubin).

^{2.} Modeling details

^{*} Corresponding author.

T.S. Zyubina et al. Solid State Ionics 325 (2018) 214–220

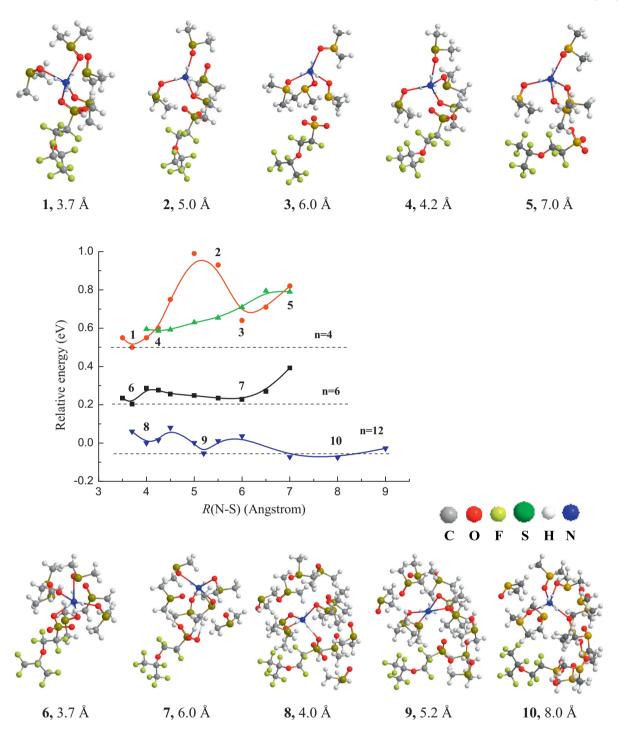


Fig. 1. Structures of $NH_4Nafion5*nDMSO$ clusters and relative energy of NH_4^+ detachment from the sulfo-group with different amounts of DMSO molecules (n). R (N-S) values are given after the comma.

different clusters in space, 177 atom clusters of $\text{CF}_3(\text{CF}_2)_9\text{OCF}_2\text{CF}(\text{CF}_3)\text{O}$ (CF₂)₂SO₃ NH₄ *12((CH₃)₂SO) corresponding to the average repeat unit of the commercial Nafion ionomer were used (Fig. 2). For the construction of the infinite chains translated in the space, a 175-atom fragment —CF₂(CF₂)₈(—CF)OCF₂CF(CF₃)O(CF₂)₂SO₃ NH₄ *12((CH₃)₂SO) (called NH₄Nafion15*12DMSO) was used (Fig. 3).

The distance between $\mathrm{NH_4}^+$ cation and $\mathrm{SO_3}^-$ group was determined as a distance between N atom and the nearest oxygen atom $(R(\mathrm{N-O_s}))$ and between N atom and S atom $(R(\mathrm{N-S}))$ of the $\mathrm{SO_3}^-$ group.

3. Results and discussion

3.1. Dependence of the barrier on DMSO content

Fig. 1 shows the different structures of the NH₄Nafion5*nDMSO clusters and the potential energy for the displacement of the NH₄⁺ cation from the sulfo-group. At n=1–3, the ammonium ion is coupled with SO_3^- - groups. It is coordinated to the oxygen atom (O_8) of the SO_3^- - group and to 1–3 DMSO molecules. When a fourth DMSO molecule is added (Fig. 1, structures 1–5), the coexistence of two isomers

Download English Version:

https://daneshyari.com/en/article/11005954

Download Persian Version:

https://daneshyari.com/article/11005954

Daneshyari.com