Accepted Manuscript

Dihydroactinidiolide, a natural product against $A\beta_{25-35}$ induced toxicity in Neuro2A cells: Synthesis, *in silico* and *in vitro* studies

Mamali Das, Sengodu Prakash, Chirasmita Nayak, Nandhini Thangavel, Sanjeev Kumar Singh, Paramasivam Manisankar, Kasi Pandima Devi

PII: S0045-2068(18)30600-X

DOI: https://doi.org/10.1016/j.bioorg.2018.08.037

Reference: YBIOO 2494

To appear in: Bioorganic Chemistry

Received Date: 18 June 2018
Revised Date: 24 August 2018
Accepted Date: 27 August 2018

Please cite this article as: M. Das, S. Prakash, C. Nayak, N. Thangavel, S. Kumar Singh, P. Manisankar, K. Pandima Devi, Dihydroactinidiolide, a natural product against $A\beta_{25-35}$ induced toxicity in Neuro2A cells: Synthesis, *in silico* and *in vitro* studies, *Bioorganic Chemistry* (2018), doi: https://doi.org/10.1016/j.bioorg.2018.08.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Dihydroactinidiolide, a natural product against Aβ₂₅₋₃₅ induced

toxicity in Neuro2A cells: Synthesis, in silico and in vitro studies

Mamali Das¹, Sengodu Prakash², Chirasmita Nayak³, Nandhini Thangavel¹, Sanjeev Kumar

Singh³, Paramasiyam Manisankar², Kasi Pandima Devi¹*

¹ Department of Biotechnology, Alagappa University, Karaikudi-630003, India.

² Department of Industrial Chemistry, Alagappa University, Karaikudi-630003, India.

³ Department of Bioinformatics, Alagappa University, Karaikudi-630003, India.

* Correspondence:

Kasi Pandima Devi

Email: devikasi@yahoo.com

Keywords: Dihydroactinidiolide; Acetylcholinesterase; Alzheimer's disease; ADME; Amyloid β

25-35: Neuro2a cells.

ABSRACT

Synthesis of natural products has speeded up drug discovery process by minimizing the time for

their purification from natural source. Several diseases like Alzheimer disease (AD) demand

exploring multi targeted drug candidates, and for the first time we report the inhibitory potential

of a novel anti AD target, which is the synthesized dihydroactinidiolide (DA). Though the

activity of DA containing solvent extracts have been proved to possess free radical scavenging,

anti bacterial and anti cancer activities, the pharmacological properties of DA per se has not been

evidenced yet. Hence DA was successfully synthesized from β-ionone using facile two-step

oxidation method. It showed potent acetylcholinesterase (AChE) inhibition with half maximal

inhibitory concentration (IC₅₀) 34.03nM, which was further supported by molecular docking

results showing strong H bonding with some of the active site residues such as GLY117, GLY119

and SER200 of AChE. Further it displayed DPPH and (.NO) scavenging activity with IC₅₀ value

1

Download English Version:

https://daneshyari.com/en/article/11006177

Download Persian Version:

https://daneshyari.com/article/11006177

<u>Daneshyari.com</u>