ELSEVIER

Contents lists available at ScienceDirect

Bioorganic Chemistry

journal homepage: www.elsevier.com/locate/bioorg

Xylarianins A-D from the endophytic fungus *Xylaria* sp. SYPF 8246 as natural inhibitors of human carboxylesterase 2

Juan Zhang^{a,b,1}, Jia-Hao Liang^{b,1}, Jian-Chao Zhao^c, Ya-Li Wang^c, Pei-Pei Dong^b, Xin-Guang Liu^b, Tian-Yuan Zhang^c, Ying-Ying Wu^b, De-Jing Shang^{a,*}, Yi-Xuan Zhang^{c,*}, Cheng-Peng Sun^{b,*}

- a School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
- ^b College of Pharmacy, College (Institute) of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
- c School of Life Science and Biopharmaceutics, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China

ARTICLE INFO

Keywords: Endophytic fungus Xylaria sp. SYPF 8246 Secondary metabolites Inhibitory hCE 2 activity Molecular docking

ABSTRACT

Eighteen secondary metabolites were isolated from the fermentation broth of the endophytic fungus *Xylaria* sp. SYPF 8246, including four new compounds, xylarianins A-D (1–4), three new natural products, 6-methoxycarbonyl-2'-methyl-3,5,4',6'-tetramethoxy-diphenyl ether (5), 2-chlor-6-methoxycarbonyl-2'-methyl-3,5,4',6'-tetramethoxy-diphenyl ether (6), and 2-chlor-4'-hydroxy-6-methoxy carbonyl-2'-methyl-3,5,6'-trimethoxy-diphenyl ether (7), and eleven known compounds (8–18). Their structural elucidations were conducted by using 1D and 2D NMR, HRESIMS, and Rh₂(OCOCF₃)₄-induced electronic circular dichroism (ECD) spectra analyses. The integrated 1 H and 13 C NMR data of three new natural products 5–7 were reported for the first time. All the isolated compounds were assayed for their inhibitory activities against human carboxylesterase 2 (hCE 2). Compounds 1, 5–9, and 18 displayed significant inhibitory activities against hCE 2 with IC₅₀ values of 10.43 \pm 0.51, 6.69 \pm 0.85, 12.36 \pm 1.27, 18.25 \pm 1.78, 29.78 \pm 0.48, 18.86 \pm 1.87, and 20.72 \pm 1.51 μ M, respectively. The interactions between compounds 1 and 5 with hCE 2 were analyzed by molecular docking.

1. Introduction

Endophytic fungi are regarded as key resources for discovering bioactive metabolites [1,2], such as cytochalasins, diphenyl ethers, xanthones, isocoumarines, indole diterpenoids, and depsipeptides, that can be used in medicinal and agricultural fields [1]. Some of bioactive secondary metabolites from fungi have been used in clinic [3-5], including penicillin, cyclosporine A, FK-506, and vancomycin, therefore, endophytic fungi have received more attentions from biosynthetic chemists and pharmacists. Recently, some bioactive indole diterpenoids that displayed antimicrobial activity and agonistic effect against human pregnane X receptor have been isolated from the endophytic fungus Drechmeria sp. in our laboratory [6,7]. As part of our continuous research for discovering bioactive secondary metabolites from plants and fungi [8-12], the investigation of the fermentation broth of the endophytic fungus Xylaria sp. SYPF 8246 led to the isolation of seventeen metabolites (Fig. 1), including four new compounds, xylarianins A-D (1-4), and three new natural products, 6-methoxycarbonyl-2'-methyl3,5,4′,6′-tetramethoxy-diphenyl ether (5), 2-chlor-6-methoxycarbonyl-2′-methyl-3,5,4′,6′-tetramethoxy-diphenyl ether (6), and 2-chlor-4′-hydroxy-6-methoxycarbonyl-2′-methyl-3,5,6′-trimethoxy-diphenyl ether (7), as well as eleven known compounds (8–18). Their structural elucidations were conducted by using HRESIMS, 1D and 2D NMR, and $Rh_2(OCOCF_3)_4$ -induced electronic circular dichroism (ECD) spectra analyses. All the isolated compounds were assayed for their inhibitory activities against human carboxylesterase 2 (hCE 2).

2. Results and discussion

Compound 1 was obtained as an amorphous powder, and had the molecular formula of $C_{18}H_{20}O_7$ on the basis of the quasi-molecular ion peak at m/z 371.1107 [M+Na]⁺ (calcd. for $C_{18}H_{20}NaO_7$, 371.1101) in the HRESIMS spectrum. The ¹H NMR data (Table 1) of 1 displayed signals of four aromatic protons at δ_H 6.37 (1H, d, J=2.6 Hz, H-5′), 6.28 (1H, d, J=2.6 Hz, H-3′), 6.21 (1H, d, J=2.0 Hz, H-4), and 5.59 (1H, d, J=2.0 Hz, H-2), signals of four methoxy groups at δ_H 3.84 (3H,

^{*} Corresponding authors.

E-mail addresses: djshang@lnnu.edu.cn (D.-J. Shang), zhangyxzsh@163.com (Y.-X. Zhang), suncp146@163.com (C.-P. Sun).

¹ These authors contributed equally to this work.

J. Zhang et al. Bioorganic Chemistry 81 (2018) 350–355

Fig. 1. Secondary metabolites isolated from Xylaria sp. SYPF 8246.

s, OCH₃-7), 3.81 (3H, s, OCH₃-5), 3.69 (3H, s, OCH₃-6'), and 3.63 (3H, s, OCH₃-3), and the signal of a methyl group at $\delta_{\rm H}$ 2.04 (1H, s, CH₃-7'). The ¹³C NMR data (Table 1) of 1 showed 18 carbon signals, including an ester carbonyl carbon at δ_C 169.2, twelve aromatic carbons at δ_C 164.2, 160.4, 159.2, 156.7, 154.5, 135.2, 134.1, 109.8, 106.9, 99.6, 92.9, and 92.3, four methoxy carbons at $\delta_{\rm C}$ 56.6, 56.4, 55.9, and 52.8, and a methyl carbon at 16.2, which indicated that 1 was a derivative of the diphenyl ethers [13,14]. Comparison of NMR data of 1 and 6methoxycarbonyl-2'-methyl-3,5,4',6'-tetramethoxy-diphenyl ether (5) [15] indicated that 1 lacked a methoxy moiety than 5. The locations of four methoxy moieties in 1 were established through an HMBC spectrum showing correlations of OCH₃-3 with C-3, OCH₃-5 with C-5, OCH₃-7 with C-7, and OCH₃-6' with C-6' (Fig. 2) in conjunction with NOESY correlations of OCH3-5 with H-4, OCH3-3 with H-2/H-4, and OCH₃-6' with H-5' (Fig. 3). Therefore, the structure of 1 was showed in Fig. 1, and it was named as xylarianin A.

Compound 2 was assigned the molecular formula C12H10O5 according to positive HRESIMS m/z 235.0602 [M + H]⁺ (calcd. for C₁₂H₁₁O₅, 235.0606), indicating 8 degrees of unsaturation. The ¹H NMR data (Table 1) of 1 displayed the presence of two aromatic protons at $\delta_{\rm H}$ 6.76 (1H, d, $J=2.0\,{\rm Hz}$, H-8), and 6.71 (1H, d, $J=2.0\,{\rm Hz}$, H-6), an olefinic proton at $\delta_{\rm H}$ 6.84 (1H, s, H-3), a methoxy at $\delta_{\rm H}$ 3.98 (3H, s, OCH₃-10), and a methyl at $\delta_{\rm H}$ 2.73 (3H, s, CH₃-9). The ¹³C NMR data (Table 1) of 2 showed 12 carbon resonances, including a carbonyl carbon at $\delta_{\rm C}$ 181.5, an ester carbonyl carbon at $\delta_{\rm C}$ 162.4, six aromatic carbons at $\delta_{\rm C}$ 164.3, 161.2, 144.3, 119.1, 117.0, and 102.2, one methoxy carbon at $\delta_{\rm C}$ 54.0, and a methyl carbon at 23.2. The ¹H and ¹³C NMR data of **2** were closely resembling to those of 2,5-dimethyl-7hydroxychromone (15) [16], except for that the chemical shift value of C-10 was deshielded from δ_C 14.5 in **15** to δ_C 162.4 in **2**, and signals of a methoxy moiety [δ_H 3.98 and δ_C 54.0] were present in 2, requiring that their difference was at C-10. The above-mentioned deduction was confirmed by long-range correlations of OCH₃-10 with C-10, and H-3 with C-2/C-10 in the HMBC spectrum (Fig. 2). Accordingly, the structure of 2 was showed in Fig. 1, and it was named as xylarianin B.

Compound **3** was isolated as a colorless oil. HRESIMS spectrum of **3** displayed the $[M+Na]^+$ peak at m/z 281.0998 (calcd. for $C_{12}H_{18}NaO_6$, 281.0996), indicating that its molecular formula was $C_{12}H_{18}O_6$. Compared with 2-hexylidene-3-methyl succinic acid 4-methyl ester (**18**) [17], the chemical shift value of C-4′ was deshielded from δ_C 31.5 in **18** to δ_C 63.7 in **3**, signals of C-5′ (δ_C 22.4) and C-6′ (δ_C 13.9) in **18** were absent, and signals of an acetoxy moiety [δ_H 2.06; δ_C 171.3 and 21.1] were present in **3**, which suggested **3** had an acetoxy moiety at C-

4' rather than an ethyl group at C-4'. In the HMBC spectrum of 3, correlations of H-4' with OAc-4' confirmed this deduction (Fig. 2). The configuration of C-3 in 3 was established as R according to optical rotation -32.8 similar to that of 18 [17]. Thus, the structure of 3 was showed in Fig. 1, and it was named as xylarianin C.

Compound 4 had a molecular formula of $C_{12}H_{20}O_5$ established by HRESIMS (m/z 267.1204 [M+Na]⁺, calcd. for $C_{12}H_{20}NaO_5$, 267.1203) and ^{13}C NMR spectra. The ^{1}H and ^{13}C NMR data of 4 were similar to those of 2-hexylidene-3-methyl succinic acid 4-methyl ester (18) [17], except for that the chemical shift value of C-3' was deshielded from δ_C 28.1 in 18 to δ_C 70.4 in 4, which indicating the location of a hydroxy group at C-3'. This deduction was confirmed by HMBC correlations of H-1' with C-3', H-2'a/H-2'b with C-3', and H-3' with C-5'. The absolute configuration of 4 was established as 3R,3'R according to a negative Cotton effect at 341 ($\Delta\varepsilon=-1.01$) nm in the Rh₂(OCOCF₃)₄-induced ECD spectrum [18], the similar NMR data of C-3 in 3 and 18, and the biosynthesis background of these analogues [17]. Accordingly, the structure of 4 was showed in Fig. 1, and it was named as xylarianin D.

In addition, the fermentation broth of the endophytic fungus *Xylaria* sp. SYPF 8246 was investigated, and led to the isolation of three new natural products, 6-methoxycarbonyl-2'-methyl-3,5,4',6'-tetramethoxy-diphenyl ether (5) [15], 2-chlor-6-methoxycarbonyl-2'-methyl- 3,5,4',6'-tetramethoxy-diphenyl ether [6, same as methyl 4,6-dimethoxy-2-(2,4-dimethoxy-6-methyl-henoxy)-benzoate] [19], and 2chlor-4'-hydroxy-6-methoxycarbonyl-2'-methyl-3,5,6'-trimethoxy-diphenyl ether (7) [19], together with eleven known compounds, grisephenone A (8) [20], 5,9,11-trimethoxy-3,13-dihydroxy benzophenone (9) [20], (R)-5-hydroxymellein (10) [21], (R)-5-carbonyl mullein (11) [22], (R)-5-methoxycarbonyl mullein (12) [23], xylarellein (13) [24], (3R)-mellein methyl ether (14) [25], 2,5-dimethyl-7-hydroxychromone (15) [16], (*R*)-4,6,8-trihydroxy-3,4-dihydro-1(2*H*)-naphthalenone (16) [26], methyl orsellinate (17) [27], and 2-hexylidene-3-methyl succinic acid 4-methyl ester (18) [17]. The integrated ¹H and ¹³C NMR data (Table 2) of 5-7 were reported for the first time.

Human carboxylesterases (hCE 1 and hCE 2) are the important enzymes that hydrolyze chemicals with functional groups, such as a carboxylic acid ester and amide, and they are known to play vital roles in drug metabolism and insecticide detoxication [28]. hCE 1 is abundantly expressed in the liver, whereas hCE 2 is predominately expressed in the gastrointestinal tract. hCE 2 is a major mediator in the gastrointestinal tract to reduce drug toxicity and enhance drug bioavailability in drug metabolism [28], and it has attracted more attentions. Therefore, all the isolated compounds were assayed for their inhibitory activities against

Download English Version:

https://daneshyari.com/en/article/11006178

Download Persian Version:

https://daneshyari.com/article/11006178

<u>Daneshyari.com</u>