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ARTICLE INFO ABSTRACT

Keywords: To accurately model double-stranded DNA in a manner that is computationally efficient, coarse-grained models
DNA modelling of DNA are introduced, where model parameters are selected by fitting the spectrum of observable DNA knots:
DNA knots

We develop a general method to fit free parameters of coarse-grained chain models by comparing experimentally
obtained knotting probabilities of short DNA chains to knotting probabilities that are computed in Monte Carlo
simulations, resulting in coarse-grained DNA models which are tailored to reflect DNA topology in the best
possible way. The method is exemplified by fitting ideal chain models as well as a bead-spring model with
excluded volume interactions, to model double-stranded DNA for physiological as well as for high salt con-
centrations. The resulting coarse-grained DNA models predict the correct persistence length and effective dia-
meter of double-stranded DNA, and can in principle be used for dynamical investigations using Molecular
Dynamics. Our modelling ansatz thus provides a blueprint for building coarse-grained models of polymers,

Monte Carlo simulation
Model fitting
Kratky-Porod wormlike chain model

which are solely based on knotting spectra.

1. Introduction

Mathematical polymer models, designed for large-scale computa-
tional studies of double-stranded DNA (dsDNA), are coarsened de-
scriptions of the DNA molecule, tailored to model its most important
physical properties. With time and growing computational power, DNA
models which include more details of DNA structure have become
tractable, meeting the demands of more sophisticated theoretical stu-
dies [1]. If physical interactions and the geometry of dsDNA are mod-
elled in detail, the range of possible dsDNA models is broadened, and an
increased number of physical and geometric parameters have to be
known to specify the computational model. On the other hand, for
coarser models, the relation between model parameters and observable
physical quantities is obscured.

Choosing proper values of DNA model parameters is a fundamental
problem in coarse-grained modelling of DNA. The aim of this work is to
introduce and illustrate a general fitting procedure which selects
parameters of coarse-grained dsDNA models to mimic global topolo-
gical properties, i.e. polymer self-entanglements, of dsSDNA: Parameters
are chosen so that experimentally observed knotting probabilities of
short dsDNA chains are in agreement with model predictions. The fit-
ting procedure is widely applicable as it is solely based on treating
dsDNA as a space curve, and does not depend on the details of a specific

polymer model.

Knots in polymers [2, 3] are known to be more or less likely to
occur, depending on overall physical conditions [4-9]. The probability
of knot formation, seen as a fingerprint of overall system conditions,
may therefore be used to gauge DNA model parameters. More specifi-
cally, the likelihood of knots in dsDNA [3, 10] sensitively depends on
salt conditions: Knotting probabilities of short dsDNA strands were first
measured by gel electrophoresis [11, 12], finding that, due to screening
of electrostatic interactions, for high salt concentrations, the fraction of
knotted chain conformations is increased. More recently, knotting
probabilities of significantly longer DNA chains for high salt con-
centrations have been obtained by studying translocation events in
solid-state nanopores [13]. The first theoretical estimate of dsDNA
knotting probability was obtained in [14], simulating lattice random
walks to model knot formation on chain closure, and assuming a seg-
ment length of b = 100nm. In the 1990s, the first seminal attempts to
model DNA [11] based on topological information were undertaken
using experimental knotting probabilities from [11] in conjunction with
the known persistence length of DNA. The resulting model consists of a
chain of cylinders, whose diameter and stiffness was obtained from
matching knotting spectra and persistence length, respectively. This
work builds upon earlier investigations [15, 16], which study the effect
of excluded volume on knotting probabilities. In [17], the topological
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approach has been extended to a bead-stick model. In contrast to [11],
however, the knotting spectrum from [11, 12] was the only input, and
self-consistently the correct persistence length of DNA (50 nm) was
recovered for physiological salt conditions. In [17], simulations corre-
sponding to dsDNA strands of up to half a million base pairs were un-
dertaken and are seen to be in good agreement with experimental re-
sults from [13] (see Fig. 2 below).

In [17], the outlined fitting procedure had been specialized to
model dsDNA for physiological salt concentrations by a bead-stick
chain with hard-core excluded volume interactions. In this work, ideal
chain models as well as a bead-spring model with excluded volume
interactions (which can in principle be used for dynamical simulations)
are fitted to model dsDNA for physiological as well as for high salt
concentrations of ¢ = 1.0M NaCl:

We first illustrate the method by fitting the most simple ideal chain
model, the random walk or freely-jointed chain, as well as a semi-
flexible chain model, the Kratky-Porod model [18], which, in case that
the polymer is described as a continuous space curve of fixed length, is
known as the wormlike chain model [19-21]: For sufficiently long
dsDNA strands, experiments show that the wormlike chain, much more
so than the freely-jointed chain, accurately describes the stretching
elasticity of dsDNA, with measured force-extension curves of dsDNA
and predictions of the wormlike chain model in close agreement for low
and intermediate forces [22]. For physiological salt concentrations, the
persistence length [, of dsDNA is known to be roughly [, = 50nm
[23-25]. Furthermore, among the numerous experimental methods that
have been employed to estimate I,, inference of [, from the measured
rate of formation of DNA circles [26, 27] has been instrumental in es-
timating how intrinsic curvature of dsDNA contributes to I, [28], and
has also been used to study the sequence dependence of DNA rigidity
[29]. In (3) it is shown that the fitted Kratky-Porod model as well as the
fitted bead-spring chain predict a persistence length of dsDNA in close
agreement with experimental findings, for physiological as well as for
high salt concentrations.

Ideal chain models of dsDNA do not contain any effects of DNA self-
interaction. Arguably, the simplest approach to define a real chain
model of dsDNA is to model the combined effect of excluded volume
and electrostatic interactions by introducing an effective dsDNA dia-
meter [11, 30]: In [11], dsDNA has been modelled as a sequence of
impenetrable cylinders of fixed length and diameter, using a fixed value
for the dsDNA Kuhn length as input to model chain bending, with the
length of cylinders given by the Kuhn length. The effective diameter of
dsDNA sensitively depends on salt concentration, reflecting the
screening of repulsive polyelectrolyte self-interactions: In [11], ex-
perimentally measured and simulated knotting probabilities have been
used to estimate the salt dependent effective dsDNA diameter, which
for the first time demonstrated the use of knotting probabilities to
predict model parameters. In (3.2) it is shown that the fitted bead-
spring model predicts an effective dsDNA diameter that is consistent
with the results in [11], for physiological as well as for high salt con-
centrations.

2. Theory and methods

To illustrate how fitting of knotting probabilities can be utilized to
introduce coarse-grained models of dsDNA, in (3), the method is ap-
plied to fit model parameters of a bead-spring model, the Kratky-Porod
model with quadratic bending potential, as well as the random walk
model. In [17], the method has been used to introduce a bead-stick
model of dsDNA. These models, as well as the implementation of
computer simulations to derive knotting probabilities, are discussed in
the following sections. Technical details of the fitting procedure are
introduced as well.
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2.1. Mathematical models

While the well-known freely-jointed chain (or random walk) model,
which describes a polymer chain as a sequence of N jointed segments of
fixed length b and arbitrary orientation, requires no additional model
parameters to be fully defined, the Kratky-Porod model [18] also
models the bending rigidity of the polymer, and therefore requires the
stiffness parameter g as additional input: Starting from the Hamiltonian
Hy; ¢ of the wormlike chain model [19-21], where chain conformations
are taken to be continuous space curves of fixed length L in natural
parametrization, discretization of the space curves as sequences of N
jointed segments of fixed length b, and subsequent discretization of the
integral defining Hyyc, gives the Hamiltonian Hyp of the Kratky-Porod

model:
N ol (BT
BHyrc = BHwrc [ ()] = > ‘/0’ ds(T
o ()
2 k=1 b (1)

with = 1/kgT, k = eb, the bending modulus of the chain [31], and
normalized vectors T;: k =1, .,N, tangent to the segments of the dis-
cretized chain. Further expanding, we have.
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xb~! I N-1 N-1
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where g=pkb™' is the dimensionless stiffness parameter,

cos(6y) = tk+1-7,:, and E, is a constant independent of chain con-
formation. The persistence length I, = [,(g) of the Kratky-Porod chain
can be obtained analytically [32], giving.

Ip(g) = —b/In(coth(g) — 1/g) ®)

For large g the persistence length is approximately given by
I,(g) = bg = Px = Peb.

With the approximation 2(1 — cos(0)) = 6> for angles 6 = O not
too far from zero, an alternative implementation of bending rigidity is
based on the quadratic bending potential Uqg, giving.

BHy1c ~ BUgs = (g/2) ZkN: O 4)

To introduce excluded volume interactions, in a simple extension of
the Kratky-Porod model, the chain beads are modelled as impenetrable
spheres of diameter d = b, resulting in a bead-stick model, which has
been employed in [17] to model dsDNA, choosing model parameters by
application of a specialized version of the fitting procedure discussed in
(2.3).

As a basis for molecular dynamics (MD) simulations, the bead-
spring model introduced in [33] is more suitable than a bead-stick
model: In this model, the angle potential of the Kratky-Porod chain is
combined with a Weeks-Chandler-Anderson (WCA) potential to model
excluded volume interactions, and the distance of adjacent beads is not
fixed, but is kept finite by introducing a finitely extensible nonlinear
elastic (FENE) potential.

In this work, we also employ this bead-spring model, with all
choices of constants as in [33], but chain stiffness is modelled in terms
of the quadratic bending potential (4) instead. The total Hamiltonian H
is therefore given by H = Uwca + Ugene + Uqs, With.

Uwea () = 4e((@/r))* = (0/1j)%) + € 5)

for two beads at a distance r;; < 21/6g, and Uwea(ry) = 0 in case that
r; > 2'/°0. For adjacent beads at distance ry, the potential Uggny adds a
non-vanishing contribution of.
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