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A B S T R A C T

In this paper we study the average crossing number and writhe of random freely-jointed polygons in spherical
confinement. Specifically, we use numerical studies to investigate how these geometric quantities are affected by
confinement and by knot complexity within random polygons. We report and compare our results with pre-
viously published results on knotted random polygons that are unconfined. While some of the results fall in line
with what have been observed in studies of unconfined random polygons, some surprising results have emerged
from our study, showing properties that are unique due to the effect of confinement. For example, under tight
confinement, the average crossing number and the squared writhe grow proportional to the polygon length
squared. However, the squared writhe of polygons with a fixed knot type (such as the trefoil) grows much slower
than the squared writhe of all polygons. We also observe that while the writhe values at a given length and
confinement radius are normally distributed, the distribution of the average crossing number values around their
mean are not normal, but rather log-normal.

1. Introduction

Random equilateral polygons are often used as a coarse approx-
imation for physical, rope-like objects that are circular and have a
certain degree of randomness to their structure, such as circular poly-
mers. In addition, polymers, e.g. DNA and RNA, may be subject to
spatial confinement such as in a virus capsid or in an artificial nano-
pore. Here we use random equilateral free-jointed polygons in spherical
confinement as a coarse model of biopolymers subject to spatial con-
finement. This article is the continuation of a study that explores the
interplay between the topology (knotting) and geometry relative to the
length and severity of confinement. In earlier papers [1–4] we have
explored how confinement affects knotting by favoring certain classes
of knot types and how confinement affects the total curvature (turning)
and total torsion (twisting) of knotted polygons.

In this article we concentrate on how confinement affects the
average crossing number (ACN) and writhe in the presence of knotting.
In particular, we explore the interplay of these two quantities with
confinement, length, and knot complexity. The ACN measures the
complexity of a configuration by counting the average number of times
the configuration passes over itself when viewed from all angles. Writhe

is a measure of chirality of a configuration and plays an important role
in knotted DNA (see e.g. [5–7]).

Three of the authors of this paper have developed a method for
efficiently generating random polygons in confinement [8–10]. While
these methods are not the first to generate confined random polygons
[11], these methods are mathematical very clean (using explicit prob-
ability density functions in the generation process) and without any
inherent bias in the generation method. The confinement generates
higher complexity knots at shorter length values than is the case for
unconfined knots, which allows us to analyze a wide range of knot types
at relatively short lengths.

For these confined polygons we 1) fix the length and vary the
confinement radius and 2) fix the confinement radius and vary the
length, and observe the effects on the average crossing number and
writhe. A few surprising results emerge from our study, showing some
properties that are unique due to the effect of knotting in confinement.
For example, under tight confinement, the squared writhe of polygons
with a fixed knot type (such as the trefoil) grows much slower than the
squared writhe of all polygons. We also observe that while the writhe
values at a given length and confinement radius are normally dis-
tributed, the distributions of the ACN values around their means are not
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normal, but rather log-normal. Furthermore, a new proposed fit func-
tion for the ACN, as a function of the length of the random polygons and
the confinement radius, provides an excellent fit over the whole range
of the data.

This manuscript is organized as follows. In Section 2 we provide
some background information on knot theoretic concepts from this
article and explain how our data set was generated. Sections 3 and 4
deal with the interplay between topology (knotting complexity), con-
finement radius, and polygon length on the average crossing number
and on the writhe, respectively. In both sections we show the numerical
evidence from our data and then explain our observations. We conclude
the article with Section 5 by summarizing the results and indicating
open questions of future work.

2. Background

2.1. Knot theory background

For the convenience of our readers, we outline and discuss briefly
some geometrical and topological concepts that are most relevant to
this paper. For a more detailed exposition, please refer to a standard
text on knot theory such as [12–15].

A knot K is a closed curve in ℝ3 with no self-intersections. Here we
assume that such a curve is a piece-wise smooth curve (this includes a
space polygon without self-intersections). Two knots are topologically
equivalent if one can be continuously deformed, together with the en-
tire ℝ3 space surrounding it and without being broken or causing self-
intersection in the process, to the other. The class of all equivalent
configurations is called a knot type. The knot type that contains the unit
circle is called the trivial knot (type), and is denoted 01.

For a fixed knot configuration K, a regular projection of K is a pro-
jection of K onto a plane such that no more than two segments of K
cross at the same point in the projection. An intersection in a regular
projection is called a crossing. A regular projection of K is typically
drawn to show which strand passes over and which strand passes under
at each crossing in the projection. A projection with this over/under
information marked at the crossings is called a knot diagram. The
minimum number of crossings among all possible knot diagrams of
knots with the same knot type as K is called the crossing number of K and
is denoted cr(K).

A knot diagram is alternating if the strands alternate between under
and over at crossings as one travels along the curve. A knot type is
alternating if it has an alternating diagram and is non-alternating if it
does not have any alternating diagram. If we switch the “over” and
“under” at each crossing in a diagram of a knot type K then we obtain a
diagram of the mirror image of K, see Fig. 1(a).

A knot type is called a composite knot if it is realized by connecting
two nontrivial knots as shown in Fig. 1(b). If a knot type is not com-
posite, then it is a prime knot type. It is important to note that a
composition of two alternating knot components always admits a
minimum knot projection that is alternating, as well as a minimum knot
projection that is non-alternating. Thus, in our study the composite
knots are not included in either of the alternating or non-alternating
knot groups.

A knot type is amphichiral or achiral if a configuration of the given
knot type is equivalent to its mirror image (in which case all config-
urations of the given knot type are equivalent to their mirror images).
We analyze knot types through 10 crossings. Oftentimes we focus on
knot types through seven crossings, in which case there are three prime
amphichiral knot types: 01, 41, and 63. There are five prime 8-crossing
and 13 prime 10-crossing amphichiral knot types. Knot types that are
not amphichiral are called chiral. For the chiral knot types, we specify a
positive and negative version of the knot type, e.g. the trefoil 31 is di-
vided into +31 and− 31, based on the writhe of ropelength-minimized
configurations from [16].

In this paper, we explore the average crossing number (ACN) and
writhe of random polygons under confinement. The ACN of a knot
configuration K is defined as the average of the number of crossings
over all regular projections of K. Given a knot diagram DK of K, the
projected writhe of DK is the sum of the± 1 values assigned to the
crossings of DK according to the convention in Fig. 2, and the writhe of
K, denoted by wr(K), is the average of the projected writhe taken over
all regular projections of K. The writhe is similar to the ACN in that it
measures the average of the crossing number of a projection over all
projection directions – with the difference being that the writhe is a
signed crossing number while the ACN is an unsigned crossing number.

We explore the effect of knot complexity on the ACN and writhe.
Knot complexity can be measured in many different ways. There are
quantities of classical knot theory (such as crossing number, genus,
braid index, and bridge number) that can be found in any standard text
on knot theory [12–15]. There are also physical or geometric mea-
surements (such as ropelength or knot energies [17–27]) that become
knot invariants by taking their minimum/infimum over all configura-
tions of a particular knot type. We use the crossing number as our
measure of knot complexity since the crossing number is the most
widely used measure of knot complexity and none of the alternatives
seem to have any intrinsic advantage over the crossing number.

2.2. Generating random polygons in confinement and knot identification

Our goal is to isolate the effects of confinement, and knotting within
confinement, on the geometry of the configurations. Unfortunately,
generating confined polygons is a difficult task. For unconfined freely-
jointed polygons, many algorithms exist, such as the crankshaft algo-
rithm [28, 29], the hedgehog algorithm [28, 30], and the generalized
hedgehog algorithm [31]. However, using an existing unconfined al-
gorithm in an accept-reject approach to generate polygons in confine-
ment is not efficient for long polygons in tight confinement [32]. Lattice
polygons and monte carlo approaches could provide a more realistic
model of confined polymers with excluded volume. However, both of

Fig. 1. (a) A knot and its mirror image; (b) a composite knot constructed from two nontrivial knots K1 and K2.

Fig. 2. A positive and a negative crossing.
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