
Author's Accepted Manuscript

Strain hardening and tensile behaviors of gradient structure Mg alloys with different orientation relationships

Jiangli Ning, Bo Xu, MingShuai Sun, Chongyang Zhao, Yunli Feng, Weiping Tong

www.elsevier.com/locate/msea

PII: S0921-5093(18)31129-8

DOI: https://doi.org/10.1016/j.msea.2018.08.053

Reference: MSA36824

To appear in: Materials Science & Engineering A

Received date: 16 April 2018 Revised date: 18 July 2018 Accepted date: 16 August 2018

Cite this article as: Jiangli Ning, Bo Xu, MingShuai Sun, Chongyang Zhao, Yunli Feng and Weiping Tong, Strain hardening and tensile behaviors of gradient structure Mg alloys with different orientation relationships, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2018.08.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Strain hardening and tensile behaviors of gradient structure Mg alloys with different orientation relationships

Jiangli Ning ^{a, *}, Bo Xu ^{a, b, *}, MingShuai Sun ^a, Chongyang Zhao ^a, Yunli Feng ^a,

Weiping Tong ^b

^a College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China

b Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern
University, Shenyang 110004, China

Abstract.

Surface mechanical attrition treatment (SMAT) was employed to produce gradient structures in AZ31B Mg alloy samples with two different initial textures. The structure of both samples can be regarded as an integration of two main layers: the severely deformed layer exhibited dramatic grain refinement to nano- and submicron-scale with weakened and randomized textures; the less deformed layer exhibited the inherited coarse grains with increased dislocation density, possessing the similar texture with the sample prior to SMAT. All the samples containing different layer constituents cut from the SMAT alloys showed remarkable increase of strength compared to the original Mg alloy. However, the two integral SMAT samples with different initial textures exhibited marked difference in uniform elongation (UE) during tension. That was attributed to the different strain hardening behaviors influenced by the deformation coordination and strain partitioning between layers

1

* Corresponding authors.

Download English Version:

https://daneshyari.com/en/article/11007014

Download Persian Version:

https://daneshyari.com/article/11007014

<u>Daneshyari.com</u>