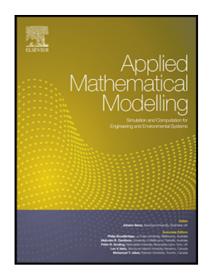
Accepted Manuscript

A continuation approach for computing parameter-dependent separatrices in SRAM cells


Joseph Páez Chávez, Jörg Schreiter, Stefan Siegmund, Christian Mayr

PII: S0307-904X(18)30310-X DOI: 10.1016/j.apm.2018.07.003

Reference: APM 12356

To appear in: Applied Mathematical Modelling

Received date: 9 September 2017 Revised date: 14 May 2018 Accepted date: 4 July 2018

Please cite this article as: Joseph Páez Chávez, Jörg Schreiter, Stefan Siegmund, Christian Mayr, A continuation approach for computing parameter-dependent separatrices in SRAM cells, *Applied Mathematical Modelling* (2018), doi: 10.1016/j.apm.2018.07.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights

- A novel approach to analyze parameter-dependent separatrices in SRAM cells is proposed.
- The method is constructed based on boundary-value problems solved via continuation techniques.
- In this way, families of separatrices can be approximated in a computationally efficient manner.
- The method is tested in a typical SRAM bit cell via the continuation platform COCO.
- A comprehensive modelling of the cell is carried out using the EKV equations for CMOS transistors.

Download English Version:

https://daneshyari.com/en/article/11007206

Download Persian Version:

https://daneshyari.com/article/11007206

<u>Daneshyari.com</u>