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A B S T R A C T

The important basic practical problem of filtering inconsequential short waves that have no significant influence
upon the wave drag, the sinkage and the trim experienced by a ship that travels at a constant speed in calm water
of large depth is considered. This problem is an essential and nontrivial element of the prediction of ship waves
via the use of a Green function that satisfies the linearized boundary condition at the free surface. Simple
analytical relations that explicitly determine the wavenumber of insignificant short waves in terms of the Froude
number and three main parameters that broadly characterize the ship hull shape are given for ships with bow,
midship and stern regions and for ships with wide transoms. These relations are obtained via a parametric
numerical analysis, based on the classical Hogner potential flow model, for a wide range of Froude numbers and
a large number of hull forms associated with a broad range of hull-shape parameters. The relations provide an
effective way of filtering negligible short waves that have no appreciable influence upon the wave drag, the
sinkage and the trim of a ship.

1. Introduction

The flow around a ship of length L that travels at a constant speed V
along a straight path, in calm water of large depth and horizontal ex-
tent, is considered within the classical framework of the linear potential
flow theory based on a Green function that satisfies the linearized
boundary condition at the free surface. This theoretical framework is
realistic and indeed yields predictions of the drag, the sinkage and the
trim experienced by a ship, as well as the wave profile along a ship hull,
that are in satisfactory overall agreement with experimental measure-
ments and are sufficiently accurate for practical purposes, notably for
early design and hull-form optimization, within a broad range of
Froude numbers, as is illustrated in e.g. [1–9]. In addition, linear po-
tential flow theory provides a practical framework that is well suited for
routine applications to ship design and hull-form optimization, as is
amply demonstrated in e.g. [10–18].

Within the framework of the linear potential flow theory based on a
Green function associated with the Kelvin-Michell linear free-surface
boundary condition that is considered here, the flow created by the ship
can be formally expressed as the sum of a non-oscillatory local flow
component that vanishes rapidly away from the ship and a wave
component that is dominant in the far field, and indeed also in the near
field. The local flow component can be evaluated in a straightforward
manner, as is shown in [19,20], and is not considered here. The ship

waves can also be effectively evaluated via the classical Fourier-Kochin
approach; e.g. [1,2,19].

Within this approach, ship waves are expressed as a linear Fourier
superposition of elementary plane waves with wavelengths
Λmin≤Λ≤Λmax where Λmin=0 and

≡ πV gΛ 2 /max
2 (1)

is the wavelength of the longest waves created by the ship along its
track. Here, g denotes the acceleration of gravity. Very short waves are
affected by surface tension or viscosity. Thus, very short ‘pure-gravity’
waves are physically unrealistic and must be ignored. Even relatively
short waves that are not appreciably influenced by surface tension or
viscosity, but do not significantly affect the pressure distribution at the
ship hull surface, can be eliminated. Moreover, short waves must be
filtered to obtain satisfactory numerical predictions that are free from
unrealistic oscillations, as is shown in e.g. [2,19,21].

Selection of the wavelength Λmin of the shortest waves that must be
retained within the Fourier-Kochin representation of ship waves is then
an important element of the computation of ship waves within the
linear potential flow theory, notably the Neumann-Michell theory ex-
pounded in [1,2], based on a Green function that satisfies the Kelvin-
Michell linear boundary condition at the free surface. Furthermore, the
elimination of short waves that is required to obtain satisfactory linear
potential flow numerical predictions is shown in [1,2,19,21] to be a
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fairly complex issue.
A practical approach for selecting Λmin is considered here. This

approach relies on a parametric numerical study—based on the clas-
sical Hogner approximation to the flow around a ship hull given in
[1,2,22–24]—for a broad range of Froude numbers and hull forms to
determine the wavelengths Λ < Λmin of inconsequential short waves
that have no significant influence upon the wave drag, the sinkage and
the trim.

Specifically, the parametric study reported here considers Froude
numbers F within the wide range

≤ ≡ ≤F V0.15 / gL 2 (2)

and analytically-defined simple ship hulls with draft D and beam B
within the broad ranges

≤ ≤ ≤ ≤ ≤ ≤D
L

B
L

D
B

0.02 0.1, 0.1 0.2, 0.1 1 (3a)

Two families of ship hulls are considered. The first family of ships
contains 120 hulls with a bow region, a stern region and a cylindrical
midship region of lengths denoted as Lb, Ls and Lm≡ L− Lb− Ls that
vary within the ranges

≤ ≤ ≤ ≤ ≤ ≤L
L

L
L

L
L

0.2 0.5, 0.1 0.5, 0 0.7b s m
(3b)

The second family is related to ships with wide transoms, and contains
120 hulls with a bow region and a cylindrical aftbody of lengths Lb and
Lm≡ L− Lb that vary within the ranges

≤ ≤ ≤ ≤L
L

L
L

0.2 0.5, 0.5 0.8b m
(3c)

Unlike the first family of ships, the second family of ships does not
involve longitudinal interferences between the bow wave and the stern
wave.

The parametric numerical analysis considered here yields analytical
expressions that explicitly determine the cutoff wavelength Λmin in
terms of the Froude number F and three main hull-form parameters: the
draft / length ratio d≡ D/L, the beam / length ratio b≡ B/L, and the
nondimensional length ℓm≡ Lm/L of the midship region or, for ships
with wide transoms, of the region aft of the bow region.

2. Basic relations

The flow due to the ship is observed in a system of orthogonal co-
ordinates X≡ (X, Y, Z) attached to the moving ship. The undisturbed
free surface is chosen as the plane Z=0 with the Z axis directed up-
ward, and the X axis is taken along the path of the ship and directed
toward the bow. The flow thus appears steady with flow velocity given
by the sum of the apparent uniform current (−V, 0, 0) that opposes the
ship speed V and the (disturbance) flow velocity given by the gradient
(ΦX, ΦY, ΦZ) of the flow potential Φ(X). The length L and the speed V of
the ship are used to define the nondimensional coordinates x≡X/L,
flow velocity (ϕx, ϕy, ϕz)≡ (ΦX, ΦY, ΦZ)/V and flow potential ϕ≡Φ/
(VL).

Within the linear potential flow analysis considered here, the flow
around the ship hull is expressed in terms of a Green function G(x, ξ)
that satisfies the radiation condition and the Kelvin-Michell linear
boundary condition at the free surface z=0, and represents the (non-
dimensional) velocity potential of the flow created at a flow-field point
x≡ (x, y, z) by a unit source located at a source point ξ≡ (ξ, η, ζ). The
Green function G can be formally expressed as G= L+W where L
denotes a non-oscillatory local flow component, which can readily be
evaluated via the simple global approximation given in [19,20], and W
represents the waves contained in G. The flow potential ϕ≡ ϕ(x) at a
flow-field point x can similarly be expressed as ϕ= ϕL+ ϕW. The local
flow potential ϕL is ignored here as was already noted.

The wave potential ϕW≡ ϕW(x) is given by

∫=
− ∞

∞ϕ
π

q1 Im ΨA EdW
q

q

(4a)

where E≡ E(q, x) denotes the elementary wave function

≡ + + + +E e q z F q x F(1 ) / i 1 ( q y)/2 2 2 2 (4b)

Moreover, the finite limits of integration± q∞ and the function Ψ filter
inconsequential short waves, and q∞ is related to the shortest wave-
length Λmin mentioned in the introduction.

As was already noted, selection of a filter function Ψ in the Fourier
representation (4a) of ship waves is an important and nontrivial basic
issue [1,2,19,21]. However, evaluation of the integral (4a) that defines
ship waves at a flow field point x is not required in the present study.
Indeed, the study considers the Hogner approximation to the wave
drag, the sinkage and the trim—defined by the integrals (21a) given
further on—for ship hulls that are defined mathematically. The in-
tegrands of the integrals (21a) vanish sufficiently fast as q→∞ that
there are no convergence issues for the evaluation of these integrals.
Thus, the filter function Ψ in (4a) only has a minor role in the present
study, although smooth decay of the function Ψ in the vicinity of q∞
renders the numerical evaluation of the integrals (21a) more robust.
The filter function Ψ is chosen here as

≡ − ∞q qΨ 1 ( / )6 (5)

The exponent 6 in (5) could be taken smaller or larger without appre-
ciable consequences. Indeed, ψ could be chosen as Ψ=1 for the
computations of the wave drag, the sinkage and the trim considered
further on.

The Fourier variable q in (4) is related to the wavenumber

≡ = +k q FK L (1 )/2 2

as readily follows from (4b), and the wavelength

≡ = =
+

≤ ≡λ
L

π
k

πF
q

πF λΛ 2 2
1

2
2

2
2

max
(6a)

where λmax≡Λmax/L is the wavelength of the longest waves created by
a ship along its track. The relations (6a) show that the shortest wave-
length Λmin and the limit of integration q∞ in the wave integral (4a) are
related as

= =
+ ∞F L V g

π
q

Λ Λ
/

2
1

min
2

min
2 2 (6b)

The ratio Λmin/Λmax of the shortest wavelength Λmin to the longest
wavelength Λmax defined by (1) is given by

= + ∞qΛ /Λ 1/(1 )min max
2 (6c)

Selection of the short-wave cutoff parameter q∞ and the related wa-
velength Λmin is the subject of this study.

The amplitude A≡ A(q, x) of the elementary wave E in the Fourier
representation (4a) is commonly called wave-amplitude function,
wave-spectrum function, or Kochin function. This function is defined in
terms of a distribution of elementary plane waves over the mean wetted
ship hull surface Σ. E.g., [19,1,23] show that the amplitude function A
associated with an arbitrary distribution of sources, with density σ(ξ),
over Σ is given by

�∫≡ − ≡ +A
F

H ξ x σ a A A1 ( ) d i2 Σ
re im

(7a)

where H(·) is the usual Heaviside unit-step function, da≡ da(ξ) is the
differential element of area at the point ξ≡ (ξ, η, ζ) of Σ, � �≡ ξq( , )
denotes the elementary wave function

� ≡ + − + +e q ζ F q ξ qη F(1 ) / i 1 ( )/2 2 2 2 (7b)

and Are and Aim are the real and imaginary parts of A. For the usual
case, considered here, of a ship hull surface Σ that is symmetric about
the ship centerplane η=0, the amplitude function A defined by (7) is
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