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a b s t r a c t

The deterministic solution of the neutron transport problem entails the coupled solution of several partial
differential equations, one for each energy group, direction and/or spherical harmonic. Several techniques
have been devised for accelerating the solution of this set of equations, both for time dependent and eigen-
value calculations. This paper describes an acceleration technique based on reduced order models and
applicable to the segregated solution of time dependent solutions. In this work the technique is applied
to the simple case of multi-group diffusion and tested on two cases of practical interest. It shows perfor-
mances that are comparable to some commonly employed acceleration techniques. Some potential advan-
tages have been observed for transients with significant flux deformations. In addition, possibly
interesting features of the proposed technique are: a relatively easy implementation in general PDE sol-
vers and numerical libraries; its potential applicability to any kind of problem requiring the iterative solu-
tion of a system of equations; a flexible implementation with a wide margin for possible modifications.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The space, energy and angular dependency of neutron popula-
tion in nuclear reactors is governed by a Boltzmann transport
equation. Such equation cannot be solved directly based on deter-
ministic methods and approximations are introduced for treating
the distribution of neutrons. The most typical angular approxima-
tions are an expansion in spherical harmonics, a discretization of
the solid angle (SN discrete ordinate methods), or the assumption
of an isotropic behavior of neutrons (diffusion approximation). In
addition, the energy dependency of neutrons is normally treated
by grouping them into different energy groups (multi-group
approach). These approximations can dramatically increase the
number of equations to be solved, for which a coupled solution
for time dependent problems is often obtained through iteration.
Due to the stiffness of the system, several tens or hundreds of iter-
ations are normally required at each time step.

A possible trivial solution to the convergence problem would be
to couple in the samematrix the equations for the different angular
and energy groups. An example of this for the case of multi-group
diffusion can be found in the work by Clifford and Jasak (2009).
However, the resulting matrix is often badly conditioned in
transport problems, and it is large and sparse even in the simple

case of diffusion (Bru et al., 2002). This technique is then rarely
employed.

Several other techniques have been proposed in the past in the
attempt to reduce the number of iterations required to solve this
system of equations. A simple method consists in applying a series
acceleration algorithm to the set of fluxes obtained during the iter-
ative process. Typical examples are the application of the Aitken’s
delta-squared method (Press et al., 2007) and its more generalized
version, the Wynn Epsilon method (Wynn, 1962). These methods
are agnostic to the physical nature of the problem and are based
on a prediction of the flux at the next iteration based on the previ-
ous iterations (Mahadevan et al., 2012). Other, more complex tech-
niques exist that attempt a series acceleration based on the spectral
characteristic of the iteration matrix. This is for instance the case of
the Modified Fission Source Iteration (Zimin and Schukin, 1992)
and the Chebyshev-based acceleration techniques like the Cheby-
shev Semi-Iterative method (Varga, 1962) and the Chebyshev
Semi-Analytical method (Zimin and Ninokata, 1996). Variational
techniques have also been employed e.g. by Ginestar et al. (1998).

A different approach for accelerating the convergence of the
neutron transport problem consists in the introduction of a predic-
tor step. The objective is to start iterations from a solution that is
closer to the converged one. A trivial physics-based prediction step
consists in an integral neutron balance to predict the average
change in neutron population. Another possibility is an interpola-
tion based on previous time steps. Finally, an effective technique
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consists in the implicit solution, for each cell of the domain, of the
full system of equations with explicit spatial terms (Fiorina et al.,
2016). It should be noted that predictor steps and series accelera-
tion methods can easily and effectively be coupled in the same
solver.

A special case is then represented by methodologies that
employ simplified problems to provide a better estimate of the
solution at each iteration step. This strategy resembles that of
the above-mentioned predictor step, with the main difference that
in this case the prediction-correction procedure is repeated at each
iteration. The most typical example of this kind of methods is the
diffusion synthetic acceleration (Larsen, 1984). This acceleration
method is often employed for discrete-ordinate problems and con-
sists in solving, for each transport sweep, a diffusion-like problem
that is used to adjust the current iterate in order to improve the
solution of the next iterate.

In this paper, an acceleration method is proposed that attempts
a faster solution neither via a predictor step, nor by reducing the
number of iterations. The idea is to accelerate the solution process
for each iteration by solving a (mathematically) reduced order
problem obtained via Reduced Order Modelling (ROM) techniques.
This accelerator can be combined with the use of a predictor step.
In principle, it may also be combined with previously mentioned
techniques for series acceleration, but this would require a careful
investigation for each specific case.

Although in principle the proposed methodology is applicable
to all cases that require an iterative solution of a system of equa-
tions, this work will focus on the application of this methodology
to the case of diffusion. The paper is structured as follows. In Sec-
tion 2 a physical and mathematical description of the problem is
provided. In Section 3, the proposed acceleration technique is
described. Section 4 evaluates the performances of the proposed
technique based on two examples of practical interest. The conclu-
sions of the paper are drawn in Section 5.

2. Description of the problem

The angular and energy approximations of the neutron trans-
port equation lead to a system of linear partial differential equa-
tions that can be discretized using different techniques (Hebert,
2009) to obtain a set of matrix equations for each energy group i

and for each direction or spherical harmonic. As a test case, in this
paper we focus on the multigroup diffusion equations (Stacey,
2007):
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This equation can be discretized, for each time step n and iter-
ation l, as:
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More precisely, in this work the iteration follows a Gauss-Seidel
scheme, where each source term is recalculated as soon as the cor-
responding flux is available from the current iteration.

Eq. (3) generally features an extremely slow convergence rate
within each time step. From a mathematical perspective this is
caused by a spectral radius of the coupled iteration matrix being
very close to unity (Zimin and Ninokata, 1996). From a more
heuristic perspective, one can notice that if an instantaneous reac-
tivity insertion is simulated, this will translate into the term Si

being increased. The overall source term ðuiÞn
v iDt

þ ðSiÞnþ1;l�1
will then

be increased by a lower amount, since ðuiÞn
v iDt

is constant (calculated

from fluxes at the previous time step). Since every term in the
left-hand side of Eq. (3) is proportional to the flux, the latter will
be increased by the same relative amount as the source term.

The term ðSiÞnþ1;l�1
will then be updated and the iteration will con-

tinue until the relative change in the fluxes is sufficiently small. By
doing some tests one can notice that in this process the conver-
gence rate depends on the ratio between the constant part of the

source term ðuiÞn
v iDt

and the part which is instead updated at every

iteration (ðSiÞnþ1;l�1
). Such a ratio is typically very small in practical

Nomenclature

Latin symbols

Ai matrix resulting from the finite volume discretization of
the diffusion equation for the ith energy group [m�1]

AR;i matrix resulting from the Galerkin projection of matrix
Ai [m

�1]
�bi source term resulting from the finite volume discretiza-

tion of the diffusion equation for the ith energy group
(Eq. (7)) [m�3�s�1]

�bR;i source term resulting from the Galerkin projection of the
source term �bi (Eq. (8)) [m

�3�s�1]
�ci; ci;k vector of coefficients, or kth coefficient, for flux recon-

struction for the ith energy group (Eqs. (6) and (9)) [�]
Di neutron diffusion coefficient for the ith energy group[m]
I identity matrix [�]
keff effective multiplication factor [�]
Sd delayed neutron source [m�3�s�1]
Sn;i fission neutron source from neutron energy groups

others than the ith [m�3�s�1]
Ss;i scattering neutron source from neutron energy groups

others than the ith [m�3�s�1]

t time [s]
v i average neutron velocity for the ith energy group [m�s�1]

Greek symbols
bt total delayed neutron fraction [�]
t average number of neutrons per fission [�]
Rr;i removal (disappearance) cross section for the ith energy

group [m�1]
Rf ;i fission cross section for the ith energy group [m�1]
ui neutron flux for the ith energy group [m�2�s�1]
vd;i delayed neutron yield for the ith energy group [�]
vp;i prompt neutron yield for the ith energy group [�]
�Wi basis function for group reconstruction for the ith energy

group [�]
The cap, as in �Sn;i or Di, indicates the discretized form of a variable
or an operator (vector or matrix, respectively). The superscripts ‘‘l”
and ‘‘n” indicates lth intra-step iteration and nth time step, respec-
tively. The subscript ‘‘i” indicates the ith energy group.
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