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a b s t r a c t

The Method of Manufactured Solutions (MMS) is an effective code verification method for assessing the
correctness of numerical algorithms and software implementation. It has great flexibility in verifying
computational functionalities of a computer code and has seen wide applications in many engineering
fields. It has been used for the radiation transport equation but has had limited success in determining
whether the observed rate of convergence is consistent with the expected value due to the coupled errors
in space and angle. There have also been only limited applications of MMS to eigenvalue problems and
very little published research has been performed on applying MMS to multiphysics problems. In this
work, MMS is applied to both flat-source and linear-source method of characteristics (MoC) in planar
geometry for source problems and eigenvalue problems. A method is developed which allows the angular
error to be decoupled from the spatial error, enabling the assessment of the convergence rate with spatial
resolution. The angular error removal technique is also applicable to eigenvalue problems. Additionally,
two independent approaches to applying MMS to eigenvalue problems are developed, one using an inho-
mogeneous manufactured source and the other using manufactured cross sections. When the neutronics
solver is coupled to a thermal conduction code, MMS is used to investigate the overall order of accuracy of
the coupled multiphysics system. Comprehensive tests are devised with a variety of solution structures to
verify the theoretical convergence rates. Numerical results show that both the eigenvalue k and the cell-
averaged scalar fluxes exhibit orders of accuracy consistent with theoretical predictions, namely, second
order for flat-source MoC and fourth order for linear-source MoC. However, for a multiphysics problem
coupling neutronics with thermal hydraulics, the overall order of accuracy is limited by the solution field
with the slowest rate of convergence.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Software verification and validation (V&V) are important steps
in the standard software development lifecycle. Verification is
the process of verifying the correctness of both numerical algo-
rithm and software implementation, distinguished from validation
which determines the adequacy of the governing equations for the
physical problem being analyzed. As one of the various verification
methods, the Method of Manufactured Solutions (MMS) has the
advantage of both great flexibility and mathematical rigor, lending
itself to wide applications in code verification. (Roache, 2002,
1998)

There have been a few successful applications of MMS to the
neutron transport equation (Salari et al., 2000; Pautz, 2001;

Schunert and Azmy, 2015) but there has been limited success in
determining whether the observed convergence rate of the error
is consistent with the expected rate due to the coupled errors in
space and angle. There have also been only limited applications
of MMS to eigenvalue problems, (Pautz, 2001; Schunert and
Azmy, 2015; Wang, 2012) and in those cases, MMS has primarily
been used merely as an analytical solution generator rather than
a solver verification tool, neither was the method for applying
MMS to eigenvalue problems clearly discussed. In our previous
work (Wang et al., 2017), we analyzed the theoretical order of
accuracy (OoA) with spatial resolution in planar geometry for
method of characteristics (MoC), with both flat source (FS) approx-
imation (Askew, 1972; Halsall, 1980; Knott, 1991) and linear
source (LS) approximation (Ferrer and Rhodes, 2016), which is
the preferred deterministic method to solve neutron transport
equation for reactor analysis problems with complicated geome-
tries. It was confirmed that FS is second order and LS is fourth order
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but a thorough discussion of the angular error removal (AER) tech-
nique was not given. Finally, there has been very few published
research on applying MMS to a multiphysics system (McClarren
and Lowrie, 2008), which turns out to be especially important
due to the scarcity of multi-physics validation data.

In this work, the predicted OoAs for MoC with FS and LS approx-
imations are verified with MMS for both fixed source problems and
eigenvalue problems. A method is developed allowing the angular
error and spatial error to be separated so that the convergence with
spatial resolution can be assessed. Additionally, we have developed
two independent approaches to apply MMS to eigenvalue prob-
lems, one using manufactured source and the other using manu-
factured cross sections. Finally, the application of MMS to a
multiphysics problem has been demonstrated with a source driven
sub-critical system coupling neutronics and thermal conduction.

Section 2 of this paper describes the theory and methodology of
the angular error separation schemes, the application of MMS to
both source problem and eigenvalue problems, and the application
of MMS to a multiphysics problem. Section 3 gives the numerical
results for both single physics and multiphysics problems using
MMS to verify the OoA predictions, with assumed solutions featur-
ing polynomial and nonpolynomial functional forms. Section 4
summarizes the conclusions and implications of this work. As pre-
dicted, the flat source approximation is second order accurate in
space and the linear source approximation is fourth order accurate
after removing the angular error. It is also shown that in a multi-
physics system the overall OoA is limited by the solution field with
the slowest rate of convergence.

2. Theory and methodology

2.1. Method of Manufactured Solutions

The essential idea of MMS is that instead of solving a specified
problem with prescribed boundary and initial conditions, one can
assume a solution beforehand and substitute it into the governing
equation that the software intends to solve. The equation is then
balanced by evaluating the resultant manufactured source. The
boundary and initial conditions can be obtained by evaluating
the manufactured solution at the boundary and at the initial time.
The software is then used to solve the system with the manufac-
tured source and boundary and initial conditions. By comparing
the numerical solution with the manufactured solution and
observing the expected rate of convergence of the error with sys-
tematic grid refinements, the computer code can be verified.

2.2. Application of MMS to a fixed source problem

The neutron Boltzmann transport equation with a fixed source
can be presented as:

Lþ Tð Þw ¼ Swþ Q ð1Þ

where L, T , S, Q respectively represent leakage, collision,
in-scattering and external source operators and w is the neutron
angular flux.

The application of MMS to a fixed source problem is straightfor-
ward. Start with an assumed solution wMMS, and evaluate the
manufactured source and boundary conditions:

QMMS ¼ Lþ T � Sð ÞwMMS

wBndy ¼ wMMSjBndy; for incoming directions
ð2Þ

The above continuous source and boundary conditions can be
discretized by cell-averaging over a spatial cell and evaluating at
angles defined in the applied quadrature set.

For example, in planar geometry discretized into J slab intervals
xj�1=2 < x < xjþ1=2; j ¼ 1; :::; J as shown in Fig. 1,

the discretized source (for flat source approximation) and
boundary conditions can be expressed as:

QMMS;j;n ¼ 1
Dxj

R xjþ1=2
xj�1=2

QMMS x;ln

� �
dx

wLB;n ¼ wMMS x ¼ 0;ln

� �
; ln > 0

wRB;n ¼ wMMS x ¼ X;ln

� �
; ln < 0

ð3Þ

where ln is from the applied quadrature set ln;xn
� �

; n 2 1; :::; N½ �.
More details about MMS in linear source MoC can be found in

(Wang et al., 2017, 2018).
This problem is then modeled and solved with a series of

refined grids. The RMS error is defined as:

ERMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J
�
XJ

j¼1

Ej
� �2vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J
�
XJ

j¼1

/j � /MMS;j

� �2vuut ð4Þ

where /j is the cell-averaged scalar flux and /MMS xð Þ is the corre-
sponding manufactured scalar flux:

/MMS;j ¼
1

DVj

Z
Vj

Z
4p

wMMS r�; X̂
� �

dXdV ð5Þ

The order of accuracy (OoA), or rate of convergence, measures
the rate of error reduction with refined grids and can be calculated
as:

p ¼
log Egrid1

Egrid2

� �
log rð Þ ð6Þ

where r is the ratio of the mesh size of grid 1 to that of grid 2,
known as the grid refinement ratio.

2.3. Procedure to remove the angular error

When equations with more than one independent variable are
discretized, discretization errors propagate and interact through
the numerical algorithm, concealing the expected rate of conver-
gence with respect to one variable when its grid is refined. To
reveal this rate of convergence, it is possible to use the assumed
solution to remove the error components of the other variables,
such as the angular variable l when assessing the spatial conver-
gence rate. This will avoid error contamination and help reveal
the rate of convergence during grid refinements in the selected
variable.

The following quantities represent the angular and spatial error
components.

Fig. 1. Planar geometry with azimuthal symmetry.
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