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a b s t r a c t 

We give exact analytical results for diffusion with a power-law position dependent diffusion coefficient 

along the main channel (backbone) on a comb and grid comb structures. For the mean square displace- 

ment along the backbone of the comb we obtain behavior 〈 x 2 (t) 〉 ∼ t 1 / (2 −α) , where α is the power-law 

exponent of the position dependent diffusion coefficient D ( x ) ∼ | x | α . Depending on the value of α we 

observe different regimes, from anomalous subdiffusion, superdiffusion, and hyperdiffusion. For the case 

of the fractal grid we observe the mean square displacement, which depends on the fractal dimension of 

the structure of the backbones, i.e., 〈 x 2 (t) 〉 ∼ t (1+ ν) / (2 −α) , where 0 < ν < 1 is the fractal dimension of the 

backbones structure. The reduced probability distribution functions for both cases are obtained by help 

of the Fox H -functions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many physical systems, such as transport in inhomogeneous 

media and plasmas [1] , and diffusion on random fractals [2] , the 

diffusion coefficient is not a constant but depends on the parti- 

cle position, like in turbulent diffusion [3,4] , including turbulent 

two-particle diffusion [5] . The heterogeneous diffusion equation 

has been investigated within the continuous time random walk 

(CTRW) theory in [6–8] , and the mean first passage time of such 

systems was analyzed in [9] . Lévy processes in inhomogeneous 

media [10] and ergodicity breaking in heterogeneous diffusion pro- 

cesses [11] including isothermal Langevin dynamics with spatially 

dependent friction [12] have been investigated, as well as the in- 

fluence of external potentials on heterogeneous diffusion processes 

was recently considered in [13] . Time and power-law position de- 

pendent diffusion coefficient were also considered in the literature 

[14] in analysis of N -dimensional diffusion equation. 

The displacement x ( t ) of a particle in a heterogeneous medium 

with space dependent diffusivity D(x ) is described by the Langevin 

equation 

d 

dt 
x (t) = 

√ 

2 D(x ) ζ (t) , (1) 
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where ζ ( t ) is a white Gaussian noise with 

〈
ζ (t) ζ (t ′ ) 

〉
= δ(t − t ′ ) 

and zero mean 〈 ζ (t) 〉 = 0 . In the Stratonovich interpretation this 

Langevin equation corresponds to the diffusion equation for the 

probability distribution function (PDF) [11] 

∂ 

∂t 
P (x, t) = 

∂ 

∂x 

[√ 

D(x ) 
∂ 

∂x 

(√ 

D(x ) P (x, t) 
)]

. (2) 

It is supplemented with the initial condition P (x, t = 0) = δ(x ) , and 

the boundary conditions are set to zero at infinities. The diffusion 

coefficient has the power-law position dependent form 

D(x ) = D x | x | α , α < 2 . (3) 

The solution of Eq. (2) is obtained in the stretched exponential 

form [11] 

P (x, t) = 

| x | −α/ 2 

√ 

4 πD x t 
exp 

(
− | x | 2 −α

(2 − α) 2 D x t 

)
, (4) 

and the mean square displacement (MSD) has the power-law de- 

pendence on time 〈
x 2 (t) 

〉
= 

∫ ∞ 

−∞ 

dx x 2 P (x, t) 	 

t 
2 

2 −α

�
(
1 + 

2 
2 −α

) . (5) 

This expression describes different diffusive regimes, where for α
< 0 one observes subdiffusion, normal diffusion for α = 0 , su- 

perdiffusion for 0 < α < 1, ballistic motion for α = 1 and hyperdif- 

fusion for 1 < α < 2. The case with α = 2 leads to exponentially 
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fast spreading [6,15] . The case with α > 2 yields localization 

1 with 

the decay MSD t −
2 

α−2 . 

A random walk in a simple comb structure consisting of main 

diffusion channel (backbone) and trapping fingers leads to anoma- 

lous diffusion with a transport exponent equal to 1/2 [16] . It can 

be described by the two-dimensional diffusion equation [17] 

∂ 

∂t 
P (x, y, t) = D x δ(y ) 

∂ 2 

∂x 2 
P (x, y, t) + D y 

∂ 2 

∂y 2 
P (x, y, t) , (6) 

where P ( x, y, t ) is the probability distribution function (PDF), 

D x δ(y ) is the diffusion coefficient in x direction with dimension 

[ D x ] = m 

3 / s , and D y is the diffusion coefficient in y direction with 

dimension [ D y ] = m 

2 / s . The δ-function in Eq. (6) means that the 

diffusion along the x direction occurs only at y = 0 (the backbone) 

and the fingers play the role of traps. The comb model (6) is 

used to describe diffusion in low-dimensional percolation clusters 

[17,18] . Comb models can further be generalized to grid and frac- 

tal grid structures [19] in which the diffusion along the x direction 

may appear in many backbones, even infinite number of backbones 

which positions belong to a fractal set S ν with fractal dimension 

0 < ν < 1. In this case anomalous diffusion is observed and the 

transport exponent depends on the fractal dimension ν . In this pa- 

per we consider heterogeneous diffusion on such comb and fractal 

grid structures, where the diffusivity is position dependent with 

power-law diffusion coefficient of Eq. (3) . 

The investigation of anomalous diffusion processes in com- 

plex systems leads to appearance of fractional differintegration in 

the corresponding stochastic and kinetic equation representing the 

memory effect in the system. Therefore, the mathematical back- 

ground of the theory of fractional differential and integral equa- 

tions [20–22] , and associated Mittag–Leffler and Fox H -functions 

[23,24] for analysis of such processes are of the primary impor- 

tance. From the other side, diffusion on fractal structures, and the 

connection between the fractal dimension and fractional differin- 

tegration, as well as description of fractal processes by fractional 

calculus have been discussed in the scientific community [25] . 

The paper is organized as follows. In Section 2 we consider a 

two-dimensional diffusion equation for a comb with the position 

dependent (power-law) diffusion coefficient along the backbone. 

Exact results for the PDF and MSD are obtained and various 

diffusion regimes are observed, such as anomalous subdiffusion, 

superdiffusion and hyperdiffusion. The case of heterogeneous 

diffusion on a fractal grid structure is considered in Section 3 , and 

exact results for the PDF and MSD are derived. The summary is 

given in Section 4 . 

2. Heterogeneous diffusion on a comb 

We consider the two dimensional diffusion equation on a het- 

erogeneous comb for the PDF P ( x, y, t ) 

∂ 

∂t 
P (x, y, t) = δ(y ) 

∂ 

∂x 

[√ 

D(x ) 
∂ 

∂x 

(√ 

D(x ) P (x, y, t) 
)]

+ D y 
∂ 2 

∂y 2 
P (x, y, t) , (7) 

where D(x ) is the position dependent diffusion coefficient along 

the backbone, D y is the diffusion coefficient along the fingers. This 

equation is a generalization of the one-dimensional heterogeneous 

diffusion Eq. (2) to a two-dimensional comb structure. The initial 

condition is 

P (x, y, t = 0) = δ(x ) δ(y ) , (8) 

1 In Ref. [7] , where inhomogeneous advection in a comb was considered, this 

regime has been named by negative superdiffusion. 

and the boundary conditions for P ( x, y, t ) and 

∂ 
∂q 

P (x, y, t) , q = { x, y } 
are set to zero at infinities, x = ±∞ , y = ±∞ . The position de- 

pendent diffusion coefficient has power-law form (3) with α < 2, 

therefore the physical dimension of the diffusion coefficient along 

the backbone D x δ(y ) is [ D x δ(y ) ] = m 

2 −αs −1 , and the physical di- 

mension of D y is [ D y ] = m 

2 s −1 . 

Inserting the diffusion coefficient (3) in Eq. (7) one obtains 

∂ 

∂t 
P (x, y, t) = D x δ(y ) 

∂ 

∂x 

[
| x | α/ 2 ∂ 

∂x 

(| x | α/ 2 P (x, y, t) 
)]

+ D y 
∂ 2 

∂y 2 
P (x, y, t) . ( 9) 

From the Laplace transform, 2 it follows 

sP (x, y, s ) − P (x, y, t = 0) = D x δ(y ) 
∂ 

∂x 

[
| x | α/ 2 ∂ 

∂x 

(| x | α/ 2 P (x, y, s ) 
)]

+ D y 
∂ 2 

∂y 2 
P (x, y, s ) . (10) 

We present the solution of the Eq. (10) in the form of the ansatz 

P (x, y, s ) = g(x, s ) exp 

(
−
√ 

s 

D y 
| y | 

)
, (11) 

from where it follows that 

P (x, y = 0 , s ) = g(x, s ) . (12) 

We also introduce the reduced PDF, which describes the transport 

along the backbones only 

p 1 (x, t) = 

∫ ∞ 

−∞ 

dy P (x, y, t) , 

and yields 

p 1 (x, s ) = 2 g(x, s ) 

√ 

D y 

s 
. (13) 

Integrating Eq. (9) over y , one finds 

sp 1 (x, s ) − p 1 (x, t = 0) = D x 
∂ 

∂x 

[
| x | α/ 2 ∂ 

∂x 

(| x | α/ 2 g(x, s ) 
)]

, ( 14) 

where the initial condition p 1 (x, t = 0) = δ(x ) . Therefore, from 

Eqs. (14) and (13) we obtain the differential equation 

2 

√ 

D y s 
1 / 2 g(x, s ) − D x 

∂ 

∂x 

[
| x | α/ 2 ∂ 

∂x 

(| x | α/ 2 g(x, s ) 
)]

= δ(x ) . ( 15) 

After the substitution f (x, s ) = | x | α/ 2 g(x, s ) , from Eq. (15) we ob- 

tain 

2 

√ 

D y s 
1 / 2 | x | −α/ 2 f (x, s ) − D x 

∂ 

∂x 

[
| x | α/ 2 ∂ 

∂x 
f (x, s ) 

]
= δ(x ) . ( 16) 

We take into account symmetrical property of the equation, which 

is invariant with respect to inversion x → −x . Therefore, in order 

to solve this equation, we use z = | x | , from where by partial differ- 

entiation with respect to x we find 

3 

2 

√ 

D y s 
1 / 2 z −α/ 2 f (z, s ) − D x (α/ 2) z α/ 2 −1 ∂ 

∂z 
f (z, s ) 

−D x z 
α/ 2 ∂ 

2 

∂z 2 
f (z, s ) − 2 D x z 

α/ 2 ∂ 

∂z 
f (z, s ) δ(x ) = δ(x ) . (17) 

This equation splits into the system of equations 

2 The Laplace transform of a given function f ( t ) is defined by f (s ) = L [ f (t)] = ∫ ∞ 
0 dt e −st f (t) . 

3 We also use here the following property x = | x | sign (x ) , and sign (x ) ∂ z = ∂ x . 
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