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Data science has emerged from the proliferation of digital data,

coupled with advances in algorithms, software and hardware (e.g.,

GPU computing). Innovations in structural biology have been driven

bysimilar factors,spurringustoask:canthesetwofields impactone

another in deep and hitherto unforeseen ways? We posit that the

answer is yes. New biological knowledge lies in the relationships

betweensequence,structure, functionanddisease,allofwhichplay

out on the stage of evolution, and data science enables us to

elucidate these relationships at scale. Here, we consider the above

question from the five key pillars of data science: acquisition,

engineering, analytics, visualization and policy, with an emphasis on

machine learning as the premier analytics approach.
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Introduction
The term Structural Biology (SB) can be defined rather

precisely as a scientific field, but Data Science (DS) is more

enigmatic, at least currently. The intrinsic difference is

two-fold. First, DS is a young field, so its precise meaning-
based on what we practice and how we educate its practi-

tioners — has had less time than SB [1,2] to coalesce into a

consensusdefinition. Second, and more fundamental, DS is

interdisciplinary to an extreme; indeed, DS is not so much a

field in itself as it is a way of doing science, given large

amounts of diverse and complex data, suitable algorithms

and sufficient computing resources. Such is the breadth and

depth of DS that it has been described as a fourth paradigm

of science, alongside the theoretical, experimental and

computational [3,4]. Because it is so vast and sprawling,

a helpful organizational scheme is to consider four V’s and

five P’s that characterize data and DS (Figure 1).

The four V’s describe the properties of data: volume, velocity,
variety and veracity. The P’s are the five disciplinary pillars

(P-i through P-v) of DS (Figure 1): (i) data acquisition, (ii)

data reduction, integration and engineering, (iii) data analysis
(often via machine learning), (iv) data visualization, prove-
nance and dissemination, and (v) ethical, legal, social and policy-
related matters. The P’s are interrelated, as are the V’s. For

example, the fifth pillar leans into each of the other four: a

host of privacy matters surround data acquisition, aggrega-

tion can have unforeseen security concerns, analytics algo-

rithms can introduce unintended bias, and dissemination

policies raise licensing and intellectual property issues.

Similarly, many modes of data analysis (P-iii) rely on

advanced visualization approaches (P-iv). The P’s also

closely link to the four V’s. For example, P-i, the data
acquisition pillar, clearly relates to volume and

velocity. More subtle linkages also exist, e.g., between data
analysis and variety: in structural biology, hybrid approaches

[5–7,8�] involve joint integration/analysis of heterogeneous

varieties of data (e.g., cryo-EM, mass spectrometry, cross-

linking), for instancevia a Bayesian statistical formulation of

the structure determination process [9,10]. The philosophy

and epistemology of DS is an entire field unto itself, and

helpful starting points can be found in recent texts [11��].

The rest of this review focuses on the junction of data

science and structural biology. We consider DS

approaches that have been applied in SB recently, includ-

ing examples from crystallography and protein interac-

tions. We focus mostly on pillar P-iii (Figure 1), and

specifically machine learning. In so doing, we largely

ignore traditional disciplinary labels. For example, the

junction of DS and SB could be viewed as simply expand-

ing the field of structural bioinformatics [12]; but, such

disciplinary labels and boundaries matter less than the

actual scientific impact. Analogously, definitions of ‘the
internet’ vary greatly, yet the impact of the internet on

science is unmistakable. For convenience, we use the

term ‘SB’ as including structural bioinformatics, simply to

distinguish what has gone before versus what may lie on

the horizon. We suspect much lies on the horizon: akin to

the rapid growth [13] of databases such as the Protein

Data Bank (PDB; [14]), our assessment of bibliometric

data (Figure 2) suggests that data science will profoundly

impact the biosciences, including structural biology. (The

best-fit curve in Figure 2 is supra-exponential, with no

inflection point in sight.) Conversely, can SB impact the

broader field of DS? This has yet to occur in a definitive

way, but, given the maturity of SB as a discipline, much

can be learnt from it and its history; thus, we start with a

short review of how SB might influence DS.
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What structural biology has to offer data
science
Open science

SB has pioneered open science through the provision of the

PDB and many derivative data sources. The complete

corpus of structural information in the PDB is free of

copyright and is available for unfettered use, non-commer-

cial or otherwise (P-v). Moreover, community practices—

such as virtually no journal publishing an article without its

data deposited in the PDB [15]—is a precedent that, if

broadly adopted in other disciplines, would deepen the

amount and diversity of data available for DS-like

approaches in those other scientific and technical domains.

The creation and free distribution of software (SW) tools

has echoed this trend, as epitomized by the Collaborative
Computational Project 4 (CCP4); developed and meticu-

lously maintained since 1979 [16], the CCP4 suite has been

a mainstay of the crystallographic structure-determination

process. CCP4 and kindred projects, alongside myriad other

SW tools and attendant data, have fostered an open disci-

pline. DS draws upon data and ideas from a wide range of

disciplinary areas, but some of these areas have been less

open than SB, at least historically. To succeed, we believe

that any DS must abide by the ‘FAIR’ principles, enabling

researchers to Find, Access, Interoperate and Reuse data and

analytics [17�]. SB has exercised this for decades, and is thus

positioned to lead the way.

Reproducibility

In principle, reproducibility is the bedrock of the scientific

enterprise. And, as a byproduct of open science, reproduc-

ibility has been central in SB, though often less so in other

realms of DS. Cultural differences across various disci-

plines, often driven by (perceived) competitive pressures,
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SB mapped onto the five pillars of DS, and in relationship to the four V’s of big data. DS rests upon five central pillars, schematized in (a) as (i) data

acquisition; (ii) data integration & engineering; (iii) data analytics (e.g., machine learning); (iv) visualization, provenance and dissemination; and the (v) ethical,

societal, legal and policy aspects. General concepts and keywords from the data sciences are near the bottom of each column (e.g., MapReduce, a

distributed computing paradigm), while more domain-specific examples rest atop each column (e.g., structure-based drug design [SBDD], middle column).

A band of opportunity arises as SB meets the data sciences. Realizing these potential opportunities requires big data, which enables a question or system

to be addressed via DS approaches like deep learning. The four V’s of big data — volume, velocity, variety and veracity — are shown in (b), illustrated by

vignettes from SB. As indicated, the volume and velocity characteristics are intertwined; for instance, modern X-ray diffraction technologies enable shutter-

less data collection, with upwards of many millions of diffraction patterns acquired per day (a concomitant increase in the rate of structure determination

means growth in the volume of the PDB). Fits of the data in the PDB histogram (b) to different functional forms — (i) a simple power law, (ii) a pure

exponential, (iii) a stretched exponential and (iv) the product of an exponential and a power law — reveal form (iv) to be the best fit (orange trace). The

Variety panel illustrates the challenge addressed by ‘hybrid methods’: data arise from cryo-EM, X-ray diffraction, NMR spectroscopy, molecular

simulations, chemical cross-linking/mass spectrometry, phylogenetic analyses and a host of other potential approaches. DS provides a framework for

integrating such data in an optimal manner (in an information theoretic sense) so as to create 3D structural models.
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