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a b s t r a c t 

Movement of individuals within metapopulations is characterised by individuals frequenting their home 

ranges. This not only constitutes memory but also nonlocal property of the resulting system making it 

plausible to be modelled by Fractional order differential equations. In this paper, we propose a fractional 

order metapopulation model for transmission of cholera between communities with differing standards 

of living. Important basic properties of the model such as non-negativity of solutions as well as bound- 

edness are tested. The solutions to the model are shown to exist and the steady state is unique whenever 

it exists. The model is numerically integrated using the iterative Adams-Bashforth-Mouton method. Our 

results show that, there is increase synchronous fluctuation in the population of infected individuals in 

connected communities with either restricted movement or with unrestricted movement of susceptible 

and infected individuals. In communities with movement restricted to only susceptible individuals, syn- 

chronous fluctuation of the infected population in the two communities is more pronounced at lower 

orders of the fractional derivatives. In unrestricted communities however, the infected population in the 

two adjacent communities synchronously regardless of the order of the fractional derivative. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cholera is a gastroenteritic infection caused by a pathogen Vib- 

rio cholerae [1] . The mode of transmission is characterised by two 

pathways; the primary route where the epidemiologically naive in- 

dividual consumes the pathogen from vibrio contaminated water; 

the secondary route which is also characterised by epidemiolog- 

ically naive individuals consuming Vibrio cholerae from contami- 

nated food from cholera patients or carriers. This secondary route 

of transmission is also commonly referred to as person-to-person 

contact [1] . Cholera infection has affected almost all parts of the 

world. Its devastating force has however been more pronounced 

in relatively impoverished communities. The associated symptoms 

and possible control measure of cholerae have been highlighted 

by many researchers, see for instance [1–5] among many others. 

It can be noted that Cholera is one of the most extensively stud- 

ied infections in the recent years. Mathematical models have been 

used to study and understand the dynamics of the infection as 

well as offer possible suggestions toward its control, see for in- 

stance [1–9] . Majority of the models used in the study of cholera 

have been mainly based on systems of integer ordinary differential 
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equations (IOODEs). Such models do not fully account for memory 

as well as nonlocal properties exhibited by the epidemic system 

being studied. Owing to such properties, it is plausible to model 

the epidemic’s dynamics using Fractional order differential equa- 

tions. 

Integer order ordinary differential equations (IOODE) models 

have been widely used to model the transmission dynamics of in- 

fectious diseases as well as the dynamics of various process in bi- 

ological systems. Modelling with IOODEs mainly accounts for the 

time evolution of the system or the infections without full regard 

of the after-effects or memory that is often exhibited in most bio- 

logical systems and infections in general. Therefore, if after-effects 

and memory exhibited in biological systems and infectious dis- 

eases transmission dynamics are to be accounted for, Fractional Or- 

der Differential Equations (FODEs) ought to be used instead of the 

classical IOODEs. Fractional order diffential equations have been 

used to model the dynamics of infections namely, hepatitis B virus 

[10] , HIV [11,12] , Hepatitis C [13] , Dengue fever [14] , chaotic dy- 

namics in cancer modelling [15] among others. Other recent stud- 

ies involving FODEs include; synchronisation of circadian rhythms 

[16] , bioluminescence behaviour [17] , Chaotic behaviour [18,19] , 

hyperchaotic behaviour [20] , chemotaxis modelling [21] , anoma- 

lous diffusion [22] , evolution equations of fraction order [23] , mag- 

netic field effects and thermal radiation in oscillatory arteries [24] , 
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Nonlinear Baggs–Freedman Model [25] , FitzHugh–Nagumo oscilla- 

tions [26] , and capturing more natural phenomena by breaking 

commutativity and associativity [27] . 

In the recently study of cholera transmission in adjacent com- 

munities [4] , a system of IOODE was used. It was indicated that 

individuals in adjacent communities often frequent their home 

range, an aspect which constitutes memory. The justification for 

a metapopulation cholera study was based on the 20 0 0–20 02 

cholera epidemic that devastated mainly the KwaZulu Natal (KZN) 

province of South Africa. Although the infection spread to eight of 

the nine provinces of the Republic of South Africa, more that 95% 

of the cases were confined within KZN province (see [4] and the 

references there in). During cholera outbreaks, rarely does the in- 

fection concentrate in only one locality. Most commonly, the infec- 

tion in affected metapopulations is driven by subpopulations pri- 

marily consuming the pathogen from a common water source that 

could be traversing through the communities under consideration. 

However, this is not always the case if we consider the 20 0 0–20 02 

cholera epidemic where the eight provinces affected are not all 

connected by a single common water source. Since cholera is also 

known to be transmitted via a secondary route through consump- 

tion of Vibrio cholerae foods [1] , the secondary route of transmis- 

sion can not be ignored. 

Movement of individuals within metapopulations is charac- 

terised by individuals frequenting their home range [28] . This is 

typical of a resulting process exhibiting memory, thus making it 

plausible to model such a system using FODEs. Contrary to inte- 

ger order differential operators, FODEs models exhibit nonlocal be- 

haviour, a property which asserts that the subsequent state of the 

model depends on both the current and historical states of such a 

model. 

This paper is organised as follows; in Section 2 a model for- 

mulation is presented, definitions of some types of fractional order 

differential equations are given and basic properties of the model 

including positivity and boundedness of solutions highlighted; in 

Section 3 , the existence and uniqueness of solutions for the model 

considered is proved following the fixed point theory approach 

used by Ullah et al. [10] ; the iterative numerical procedure used 

to simulate the model as well as numerical results are given in 

Sections 4 and 5 a conclusion is presented. 

2. Mathematical model 

Njagarah and Nyabadza [4] developed a metapopulation model 

for cholera transmission assuming that individuals infected with 

cholera recover from the infection with acquired immunity that 

wanes over time. The metapopulation model was based on a sys- 

tem of integer order ordinary differential equations with the adja- 

cent communities assumed to contract the infection through con- 

sumption of Vibrio cholerae contaminated water from unconnected 

water sources as well as consumption of contaminated foods but 

particularly localised within their home communities. The inter- 

connection of the communities under consideration is through 

movement of either susceptible or infected individuals across com- 

munities with an assumption that individuals follow the dynam- 

ics of destination community. Recovered individuals were assumed 

to be less likely to move across communities having learnt from 

their past experiences and due to fear of reinfection. Owing to 

the memory aspect assumed to be exhibited, the metapopulation 

model is studied using FODEs in this paper to ascertain vital dy- 

namics that might have not been captured by the integer order dif- 

ferential equations model type presented in [4] . Several approaches 

for generalisation of fractional order differentiation have been pro- 

posed, for example, Riemann–Liouville, Caputo-fractional deriva- 

tive as well as Generalised functions approaches among others. For 

convenience of the reader, we give the definitions of the Riemann–

Liouville, Caputo-fractional derivatives since the work presented in 

this paper is centred around Caputo-fractional derivative which is 

a modification of the Riemann–Liouville fractional derivative. 

Let L 1 = L 1 [ a, b] be a class of Lebesque integrable functions on 

[ a, b ], a < b < ∞ . 

Definition 1. The fractional integral (or the Riemann–Liouville in- 

tegral) of order α ∈ R 

+ of the function g ( t ), t > 0 (g : R 

+ → R ) is 

defined by 

I αa g(t) = 

1 

�(α) 

∫ t 

a 

(t − s ) α−1 g(s ) d(s ) , t > 0 (1) 

The fractional derivative of order α ∈ (n − 1 , n ) of g ( t ) is defined 

in two (non equivalent) ways 

(i) Riemann–Liouville fractional derivative: take fractional integral 

of order (n − α) , and then take n th derivative as follows 

D 

α
∗ g(t) = D 

α
∗ I n −α

a g(t ) , D 

n 
∗ = 

d n 

dt n 
, n = 1 , 2 , 3 , . . . . 

(ii) The generalised Caputo-fractional derivative: take n th derivative 

and then take a fractional integral of order (n − α) 

a D 

αg(t) = I n −α
a D 

α
∗ g(t) = 

{
1 

�(n −α) 

∫ t 
a 

g (n ) (τ ) 
(t−τ ) α+1 −n , n − 1 < α < n, 

d n 

dt n 
g(t) α = n, 

where n is the first integer greater that α, �(x ) = 

∫ ∞ 

0 t x −1 e −t dt

- a gamma function. 

Owing to the need to consider fractional derivatives with nonlo- 

cal and non-singular kernel, other fractional differential equations 

have since been developed as defined below; 

Definition 2. The Antagana–Baleanu (ABC) fractional derivative in 

Caputo sense [29] Let f ∈ H 

1 ( a, b ), a < b, α ∈ [0, 1] then, the ABC 

fractional derivative is given as: 

ABC 
a D 

α
t ( f (t)) = 

B (α) 

1 − α

∫ t 

a 

f ′ ( x ) E α
[
−α

( t − x ) α

1 − α

]
dx, 

where B ( α) has the same properties as the Caputo Fabrizio case. 

Definition 3. The Antagana–Baleanu (ABR) fractional derivative in 

Riemann–Liouvile sense [29] : Let f ∈ H 

1 ( a, b ), a < b, α ∈ [0, 1] then, 

the ABC fractional derivative is given as: 

ABR 
a D 

α
t ( f (t)) = 

B (α) 

1 − α

∫ t 

a 

f ( x ) E α

[
−α

( t − x ) α

1 − α

]
dx. 

Definition 4. The Caputo–Fabrizio fractional order [30] is given 

by 

D 

α
t f (t) = 

M (α) 

(1 − α) 

∫ t 

a 

˙ f ( τ ) exp 

[
−α( t − τ ) 

1 − α

]
dτ

with M (α) a normalised function such that M (0) = M (1) = 1 . For 

detailed explanations about this Fractional derivative, readers are 

referred to Ref. [30] . 

Since the model considered in this paper is an initial value 

problem, we use the specific case of the generalised Caputo- 

Fractional derivative with a = t 0 = 0 when dealing with the ba- 

sic properties of the model. Caputo’s definition has the advantage 

of dealing appropriately with initial value problems [14] , a draw- 

back often associated with combining Riemann–Liouville differen- 

tial equations with classical initial conditions. We note that the 

definition of time-fractional derivative of a function g ( t ) at t = t n 
involves an integration and calculating time-fractional derivative 

that requires all the past history, i.e all values of g ( t ) from t = 0 
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