

Complexity of excitation modes are built with increasing valence nucleons beyond a major shell. Valence proton–neutron or related hole (n–p) interaction, which is proportional to N_pN_n plays a critical role in enhancing the collectivity and deformation in nuclei. Further details can be found in traditional papers [1–4]. Casten [5,6] later introduced a phenomenological scheme which is manifesting integrated n–p interaction and called the scheme as N_pN_n scheme. The

E-mail address: bahadir.saygi@ege.edu.tr.

 <https://doi.org/10.1016/j.nuclphysa.2018.09.080> 0375-9474/© 2018 Elsevier B.V. All rights reserved.

> Please cite this article in press as: B. Sayğı, Symmetrical level schemes of the even-even Sm_{A \approx 130 and Yb_A \approx 160} nuclei up to 10^+ in the yrast bands, Nucl. Phys. A (2018), https://doi.org/10.1016/j.nuclphysa.2018.09.080

 scheme is letting both interpretation of existence data and prediction while studying unknown regions. In the N_pN_n scheme, most of the nuclear observables follow similar trends such as E_{4+}/E_{2+} , $E(2^+)$ and $B(E2;2^+ \rightarrow 0^+)$ as a function of $N_{\pi}N_{\nu}$ in different mass regions. Later, Bhattacharya et al. [\[7,8\]](#page--1-0) showed that the tunnelling probability of the α -particle decay vary with the number of effective valence nucleons and investigated the fraction of contribution to binding energy difference of experiment and theory. Pseudo-mirror nuclei (PMN) has been introduced to the literature by Moscrop et al. [9] and later Saygı [10] carried on a systematic work on the excited states and their related reduced transition probabilities of the PMN ranging from Zr to W nuclei. The PMN concept is based on the $N_{\pi}N_{\nu}$ quantity inherited from Ref. [5], where N_{π} is half of the valence protons (or holes) and N_v is half of valence neutrons (or holes) from the nearest closed shell by considering the subshell closures. In the scheme of PMN, the nuclei with equal number of $N_{\pi}N_{\nu}$ manifest similar structure in consequence of particle–hole symmetry; almost equal E₄+/E₂₊, E(2⁺) and a smooth trend in B(E2; $L^+ \rightarrow (L-2)^+$) as a function of N_πN_{*v*}

 in different mass regions [5,9,10] up to spin-quantum numbers where the depopulating energies of related excited states do not diverge more than 40 keV. The behaviour of $B(E2)$ values from Ref. [\[10\]](#page--1-0) are visualized in Fig. 1 and can be summarized as;

• B(E2; $L^+ \rightarrow (L - 2)^+$) $_A \approx 130$ is approximately two times larger than B(E2; $L^+ \rightarrow$ $(L-2)^+$ $)$ *A*≈100,

• B(E2; $L^+ \rightarrow (L - 2)^+$)_{A≈160} is approximately two times larger than B(E2; $L^+ \rightarrow$ $(L-2)^+$) $A \approx 100$,

$$
\begin{array}{c}\n 20 \\
21 \\
22 \\
23\n \end{array}
$$

• B(E2; $L^+ \rightarrow (L-2)^+$)_{A≈160} is approximately equal to B(E2; $L^+ \rightarrow (L-2)^+$)_{A≈170},

therefore,

• B(E2; $L^+ \rightarrow (L-2)^+$) $_{A \approx 160}$ is expected to be approximately equal to B(E2; $L^+ \rightarrow$ $(L-2)^+$ $)_{A \approx 130}$

 Fig. [1](#page--1-0) represents pseudo-mirror ¹⁰²Mo ($8p_h-10n_p$)–¹³⁴Nd ($10p_p-8n_h$), ¹⁰⁰Zr ($10p_h-10n_p$)– 164 Hf (10p_h–10n_p) and ¹⁶⁸Hf (10p_h–14p_p)–¹⁶⁰Er (14p_h–10n_p) nuclei from different mass regions A \approx 100, A \approx 130 and \approx 160/170, where $p_{p(h)}$ for proton particle (hole) and $n_{p(h)}$ for neutron particle (hole). It is quite surprising that equal number of integrated p–n interaction are building a symmetrical level scheme and related B(E2) values in the different mass regions.

e valence nucleons and investigated the fraction of contribution in
experiment and theory. Pseudo-mirror nuclei (PMN) has been included
particular of the PMN in absort in related relations probabilities of the PMN ranging Energy levels and related B(E2) values of the $^{136}Sm-^{160}Yb$, $^{134}Sm-^{162}Yb$ and $^{132}Sm-^{160}Yb$ have been extracted from literature and combined in Fig. 2. The ratios of E_{4+}/E_{2+} in Sm– 160 Yb nuclei are 2.69 and 2.62, their related B(E2)_{4+/2+} ratio equals to 1.35(19) and 1.39(13) respectively. Both nuclei lie in the vicinity of $O(6)$ symmetry, where the E_{4+}/E_{2+} and the B(E2)_{4+/2+} ratios are expected to be 2.50 and 1.32 [20]. The β_2 quadrupole deformations from Möller work [\[21\]](#page--1-0) are 0.237 for 136 136 136 Sm and 0.208 for 160 Yb, both prolate geometry. Table 1 shows B(E2) values in Weisskopf unit for PMN from 136 Sm to 160 Yb, where the deformation of Sm is larger than in 160 Yb, which is in agreement with the prediction of theory. For the PMN ¹³⁴Sm-¹⁶²Yb, the E₄₊/E₂₊ ratios are 2.93 and 2.93, their related B(E2)_{4+/2+} equal to 1.06(10) and 1.52(7) respectively. The excitation energies of both nuclei lie in the vicinity of X(5) symmetry [\[22\]](#page--1-0), where the E_{4} +/ E_{2} + is expected to be 2.91. The B(E2)_{4+/2+} ratio is accepted 1.58 in $X(5)$ symmetry [22]. The 134 Sm nuclide is another example where excitation energies and related B(E2) values disagree. Of course the interpretation is based on existence data, a new measurement using state of art techniques may reveal more precise measurements

Download English Version:

<https://daneshyari.com/en/article/11007728>

Download Persian Version:

<https://daneshyari.com/article/11007728>

[Daneshyari.com](https://daneshyari.com/)