

Complexity of excitation modes are built with increasing valence nucleons beyond a major shell. Valence proton-neutron or related hole (n-p) interaction, which is proportional to N_pN_n plays a critical role in enhancing the collectivity and deformation in nuclei. Further details can be found in traditional papers [1–4]. Casten [5,6] later introduced a phenomenological scheme which is manifesting integrated n-p interaction and called the scheme as N_pN_n scheme. The

E-mail address: bahadir.saygi@ege.edu.tr.

https://doi.org/10.1016/j.nuclphysa.2018.09.080
0375-9474/© 2018 Elsevier B.V. All rights reserved.

Please cite this article in press as: B. Sayğı, Symmetrical level schemes of the even–even $Sm_{A\approx 130}$ and $Yb_{A\approx 160}$ nuclei up to 10^+ in the yrast bands, Nucl. Phys. A (2018), https://doi.org/10.1016/j.nuclphysa.2018.09.080

JID:NUPHA AID:21350 /FLA

з

ARTICLE IN PRESS

B. Savğı / Nuclear Physics $A \bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet$

scheme is letting both interpretation of existence data and prediction while studying unknown regions. In the $N_p N_n$ scheme, most of the nuclear observables follow similar trends such as E_{4^+}/E_{2^+} , $E(2^+)$ and $B(E_{2;2^+} \rightarrow 0^+)$ as a function of $N_{\pi}N_{\nu}$ in different mass regions. Later, з Bhattacharya et al. [7,8] showed that the tunnelling probability of the α -particle decay vary with the number of effective valence nucleons and investigated the fraction of contribution to binding energy difference of experiment and theory. Pseudo-mirror nuclei (PMN) has been introduced to the literature by Moscrop et al. [9] and later Saygi [10] carried on a systematic work on the excited states and their related reduced transition probabilities of the PMN ranging from Zr to W nuclei. The PMN concept is based on the $N_{\pi}N_{\nu}$ quantity inherited from Ref. [5], where N_{π} is half of the valence protons (or holes) and N_{ν} is half of valence neutrons (or holes) from the nearest closed shell by considering the subshell closures. In the scheme of PMN, the nuclei with equal number of $N_{\pi}N_{\nu}$ manifest similar structure in consequence of particle-hole symmetry; almost equal E_{4^+}/E_{2^+} , $E(2^+)$ and a smooth trend in $B(E2; L^+ \rightarrow (L-2)^+)$ as a function of $N_{\pi}N_{\nu}$

in different mass regions [5,9,10] up to spin-quantum numbers where the depopulating energies of related excited states do not diverge more than 40 keV. The behaviour of B(E2) values from Ref. [10] are visualized in Fig. 1 and can be summarized as;

- B(E2; $L^+ \rightarrow (L-2)^+)_{A\approx 130}$ is approximately two times larger than B(E2; $L^+ \rightarrow (L-2)^+)_{A\approx 100}$,
- B(E2; $L^+ \rightarrow (L-2)^+)_{A\approx 160}$ is approximately two times larger than B(E2; $L^+ \rightarrow (L-2)^+)_{A\approx 100}$,

• B(E2; $L^+ \rightarrow (L-2)^+)_{A\approx 160}$ is approximately equal to B(E2; $L^+ \rightarrow (L-2)^+)_{A\approx 170}$,

therefore,

• B(E2; $L^+ \rightarrow (L-2)^+)_{A\approx 160}$ is expected to be approximately equal to B(E2; $L^+ \rightarrow (L-2)^+)_{A\approx 130}$,

Fig. 1 represents pseudo-mirror ¹⁰²Mo $(8p_h-10n_p)-^{134}$ Nd $(10p_p-8n_h)$, ¹⁰⁰Zr $(10p_h-10n_p)-^{164}$ Hf $(10p_h-10n_p)$ and ¹⁶⁸Hf $(10p_h-14p_p)-^{160}$ Er $(14p_h-10n_p)$ nuclei from different mass regions A \approx 100, A \approx 130 and \approx 160/170, where $p_{p(h)}$ for proton particle (hole) and $n_{p(h)}$ for neutron particle (hole). It is quite surprising that equal number of integrated p-n interaction are building a symmetrical level scheme and related B(E2) values in the different mass regions.

Energy levels and related B(E2) values of the ¹³⁶Sm-¹⁶⁰Yb, ¹³⁴Sm-¹⁶²Yb and ¹³²Sm-¹⁶⁰Yb have been extracted from literature and combined in Fig. 2. The ratios of E_{4+}/E_{2+} in 136 Sm $^{-160}$ Yb nuclei are 2.69 and 2.62, their related B(E2)_{4+/2+} ratio equals to 1.35(19) and 1.39(13) respectively. Both nuclei lie in the vicinity of O(6) symmetry, where the E_{4+}/E_{2+} and the B(E2)_{4+/2+} ratios are expected to be 2.50 and 1.32 [20]. The β_2 quadrupole deformations from Möller work [21] are 0.237 for ¹³⁶Sm and 0.208 for ¹⁶⁰Yb, both prolate geometry. Table 1 shows B(E2) values in Weisskopf unit for PMN from 136 Sm to 160 Yb, where the deformation of ¹³⁶Sm is larger than in ¹⁶⁰Yb, which is in agreement with the prediction of theory. For the PMN 134 Sm $^{-162}$ Yb, the E₄₊/E₂₊ ratios are 2.93 and 2.93, their related B(E2)_{4+/2+} equal to 1.06(10) and 1.52(7) respectively. The excitation energies of both nuclei lie in the vicinity of X(5) symmetry [22], where the E_{4+}/E_{2+} is expected to be 2.91. The B(E2)_{4+/2+} ratio is ac-cepted 1.58 in X(5) symmetry [22]. The 134 Sm nuclide is another example where excitation energies and related B(E2) values disagree. Of course the interpretation is based on existence data, a new measurement using state of art techniques may reveal more precise measurements

Download English Version:

https://daneshyari.com/en/article/11007728

Download Persian Version:

https://daneshyari.com/article/11007728

Daneshyari.com