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Proton’s electromagnetic form factors from a non-power 
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a Instituto de Física, Universidad Autońoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 
San Luis Potosí, S.L.P. 78290, Mexico

b Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Lateral Av. Salvador Nava s/n, San Luis Potosí, 
S.L.P. 78290, Mexico

Received 29 May 2018; received in revised form 25 September 2018; accepted 27 September 2018

Abstract

The electric-charge, and magnetic-dipole form factors of the proton are calculated from an underlying 
constituent quark picture of hadron structure based on a potential shaped after a cotangent function, which 
has the properties of being both conformally symmetric and color confining, finding adequate reproduction 
of a variety of related data.
© 2018 Published by Elsevier B.V.

Keywords: General properties of QCD; Potential models; Electric and magnetic moments

1. Introduction

Constituent quark model descriptions of hadron properties, such as excitation spectra, decay 
modes, or electromagnetic form-factors, employ quantum few-body problems techniques based 
on effective potentials [1] supposed to capture to some extent the essentials of the fundamental 
confining strong interaction. The potentials of widest spread in the literature are shaped after 
power-functions of the relative distances between the quarks, and among them one encounters 
for example (i) the infinite power square well potential, VSW(r) = 1/r∞ = 0, 0 ≤ r ≤ r0, and 
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V (r) = r∞ = ∞ for ∞ < r < 0 and r > r0, (ii) the harmonic oscillator, VHO(r) = ω2r2/2, (iii) 
the Cornell potential, VC(r) = −α/r +βr , etc. Such models usually require a significant number 
of free parameters to produce wave functions of the quark systems capable to account for the spe-
cific of a variety of data compiled in [2]. One of the reason for this circumstance can be related 
to the mismatch between the symmetry properties of the power-potentials and the symmetries of 
the fundamental strong interaction like the conformal symmetry, which manifests itself among 
others by the walking of the strong coupling αs to a fixed value in the infrared regime of QCD [3]
and the notable hydrogen-like degeneracies appearing in the mass distributions of the unflavored 
mesons, a phenomenon addressed for example in [4], [5], [6]. In order to improve this aspect of 
the quark models, it naturally comes to ones mind to explore more complicated potential func-
tions. The observation that the infinite square well has same spectrum as the 

[
2 csc2(πr/r0) − 1

]
potential, referred to in [7] as the “super-symmetric partner” to VSW(r/r0), seems to point to-
ward the exactly solvable trigonometric potentials known from the super-symmetric quantum 
mechanics (SUSY-QM), as possible upgrades to the power-potentials. Indeed, several of the fi-
nite power-potential series in use can be viewed as first terms in the infinite series expansions of 
properly designed trigonometric functions. Specifically, the (here dimensionless) inverse square 
distance term, R2/r2 where R is a matching length parameter, approximates csc2(r/R) at large 
(r/R) values. The linear plus harmonic oscillator potential can be viewed as an approximation 
to the trigonometric Scarf potential,
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by the first terms of its series expansion, while the Cornell potential could be viewed as a trun-
cation of the series expansion of the cotangent function according to,

−b cot
( r

R

)
≈ −b

R

r
+ b

3

r

R
. (2)

The principal advantage of trigonometric- over finite power potentials lies not that much in the 
exact solubility of the former, but rather in their symmetry properties, which show up in certain 
appropriately chosen variables. For example, while the centrifugal barrier, �(� + 1)/r2, and the 
Cornell potential are only rotationally symmetric, their trigonometric extensions towards �(� +1)

csc2(r/R) and − cot(r/R) have the higher O(4) symmetry, just as would be required by the 
conformal symmetry at the level of the excitations. This is visible from the fact that the stationary 
Schrödinger wave equation, describing (upon separation of center-of mass and relative, r/R, 
coordinates) the one-dimensional radial part[

− h̄2c2

R2

d2

dχ2 + h̄2c2

R2

�(� + 1)

sin2 χ
− 2

h̄2c2b2

R2 cotχ

]
Un�(χ) = E2Un�(χ), χ = r

R
∈ [0,π] ,

(3)

of a two-body wave function, with n being the node-number, and � the relative angular momen-
tum value, can be transformed through the change

Un�(χ)Ym
� (θ,ϕ) = 
n�(χ)

sinχ
Ym

� (θ,ϕ) = 
tot
n� (χ, θ,ϕ), (4)

to quantum motion on the three dimensional hypersphere, S3, according to
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