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A B S T R A C T

We present a method for designing error-resistant phase-shifting algorithms to suppress error sources in phase-
shifting interferometry. Firstly, the partial-differential processing is applied to the weighted least squares
algorithm to obtain error sensitivity equations. Sequentially, bound equations are obtained to minimize error
sensitivity. Finally, the bound equations are solved to determine the weights, and the error-resistant phase-
shifting algorithms are developed. Aiming at a self-developed interferometer, the proposed method is used to
design phase-shifting algorithms which are resistant to given error sources. Theoretical analysis and numerical
simulations of the self-designed algorithms compared with a commercial algorithm are completed. Theoretical
analysis indicates that the self-designed algorithms meet the desired requirements. Numerical simulations verify
the correctness of theoretical analysis. And the comparisons show that the self-designed algorithm is more
resistant to error sources that needs to be suppressed. These results verify the proposed method and demonstrate
its effectiveness.

1. Introduction

In phase-shifting interferometry, the measured object is the phase
difference of reference and test wave fields. Phase-shifter introduces
additional OPD (optical path difference), which yields sequential in-
terferograms. These interferograms are captured by detector, and then
are processed using a given phase-shifting algorithm to calculate the
phase difference [1]. This technique reduces the influence of contrast,
and yields good results even if the interferograms have poor contrast.
Furthermore, it reduces the influence of background and nonuniformity
of the light source, and provides high accuracy [2].

In phase-shifting interferometers, PZT (piezoelectric transducers) is
commonly used as phase shifter, CCD (charge-coupled device) or CMOS
(complementary metal oxide semiconductor) is used as detector, and
laser is typically used as light source. The nonideal performance of
these devices usually causes measurement errors. Therefore, the phase-
shifting algorithm should be designed to suppress these error sources.

To date, many methods have been reported on designing phase-
shifting algorithms to minimize particular errors. Freischlad [3] pro-
posed a method to evaluate the performance of phase-shifting algo-
rithms through Fourier theory and Zhang [4] used this theory to derive
a new error-resistant algorithm. De Groot [5] designed algorithms
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via window functions such as the Hanning window. Surrel [6] pre-
sented a characteristic polynomial theory for designing phase-shifting
algorithms, and Zhu [7] designed a new algorithm by overlapping
averaged results of the old algorithm, making the new algorithm more
insensitive to phase-shift error. Phillion [8] proposed a method based
on recursion rules to design a new algorithm from the old one. Shi [9]
presented an effective approach to derive phase-shifting algorithms
based on the self-convolution of a rectangle window, and designed an
algorithm to suppress the phase-shift error and detector-response error
simultaneously. However, to the best of our knowledge, these methods
do not discuss the error sensitivity of algorithms, but only focus on
suppressing phase-shift error, detector-response error, or both, while
ignoring the other error sources.

This paper thus proposes an effective method for designing error-
resistant algorithms. By applying the partial-differential method, we get
sensitivity relationship between weighted least-square algorithm and
error sources, which named error sensitivity equations. When the error
sensitivity vanishes, the weighted least-square algorithm is insensitive
to corresponding error sources. And then, we get bound equations.
Sequentially, the bound equations are solved to determine the weights,
and finally, phase-shifting algorithms are obtained that are resistant to
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corresponding error sources. The designed error-resistant phase-shifting
algorithms effectively reduce the performance requirements for phase
shifter, detector, and light source.

This paper is organized as follows. Section 2 introduces the weighted
least-square phase-shifting algorithm. Section 3 introduces the main
error sources (phase-shift error, detector-response error, and light-
source-instability), analyses sensitivity relationship between weighted
least-square algorithm and these error sources, and then derives the
bound equations. Section 4 takes a self-designed interferometer as
an example to design algorithms which are capable of suppressing
the first-, second-, and third-order phase-shift error, the first- and
second-order detector-response error, and the first- and second-order
light-intensity–instability. Section 5 uses Fourier transform theory and
numerical simulations to evaluate the performance of self-designed
algorithms. The self-designed algorithms are compared with Zygo 13-
frames algorithm [10,11], and the results demonstrate the effectiveness
of the proposed method.

2. Weighted least-square algorithm

In phase-shifting interferometry, the nth irradiance 𝐼𝑛(𝑥, 𝑦) at a point
(𝑥, 𝑦) could be expressed as follows [12],

𝐼𝑛 (𝑥, 𝑦) = 𝐴 (𝑥, 𝑦) + 𝐵 (𝑥, 𝑦) × cos
[

𝜙 (𝑥, 𝑦) + 𝛿𝑛 (𝑥, 𝑦)
]

(1)

where 𝐴 (𝑥, 𝑦) is the background intensity, 𝐵 (𝑥, 𝑦) is the amplitude of
modulation, the quantity to be measured 𝜙 (𝑥, 𝑦) is the phase difference
of the wave fields that interfere, and 𝛿𝑛 (𝑥, 𝑦) is the phase shift of the nth
irradiance. Eq. (1) can be rewritten as,

𝐼𝑛 (𝑥, 𝑦) = 𝐴 (𝑥, 𝑦) + 𝐵𝑐𝑜𝑠 (𝑥, 𝑦) cos
[

𝛿𝑛 (𝑥, 𝑦)
]

+ 𝐵𝑠𝑖𝑛 (𝑥, 𝑦) sin
[

𝛿𝑛 (𝑥, 𝑦)
]

(2)

where,

𝐵𝑐𝑜𝑠 (𝑥, 𝑦) = 𝐵 (𝑥, 𝑦) cos [𝜙 (𝑥, 𝑦)]

𝐵𝑠𝑖𝑛 (𝑥, 𝑦) = −𝐵 (𝑥, 𝑦) sin [𝜙 (𝑥, 𝑦)] (3)

Then, the phase difference can be calculated from 𝐵𝑠𝑖𝑛 (𝑥, 𝑦) and
𝐵𝑐𝑜𝑠 (𝑥, 𝑦) by,

𝜙 (𝑥, 𝑦) = arctan
[

−
𝐵𝑠𝑖𝑛 (𝑥, 𝑦)
𝐵𝑐𝑜𝑠 (𝑥, 𝑦)

]

(4)

The phase at point (𝑥, 𝑦) is only determined by the intensity and
phase shift at this point, so we omit the explicit dependence (𝑥, 𝑦) on
position. Phase-shifting algorithm can be developed from the principle
of weighted least-square estimation [13]. With the weight function, the
error function 𝜖 could be defined as,

𝜖 =
𝑁
∑

𝑛=1
𝑤𝑛

(

𝐼𝑛 − 𝐼𝑛
)2

=
𝑁
∑

𝑛=1
𝑤𝑛

[

𝐴 + 𝐵𝑐𝑜𝑠 cos(𝛿𝑛) + 𝐵𝑠𝑖𝑛 sin(𝛿𝑛) − 𝐼𝑛
]2

(5)

where 𝐼𝑛 represents the nth actual irradiance and 𝑤𝑛 is the nth weight.
The 𝜖 is minimized when the derivatives of 𝜖 with respect to 𝐴, 𝐵𝑠𝑖𝑛 and
𝐵𝑐𝑜𝑠 vanish. This condition yields the following matrix equation,
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(6)

If the weights are selected to satisfy the following conditions,
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⎨
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𝑁
∑

𝑛=1
𝑤𝑛 = 1

𝑁
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𝑛=1
𝑤𝑛 cos(𝛿𝑛) =

𝑁
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𝑛=1
𝑤𝑛 sin(𝛿𝑛) =

𝑁
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2𝛿𝑛
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(7)

where Q is a non-zero constant, the phase difference 𝜙 can be calculated
by,

𝜙 = arctan

[

−
∑𝑁

𝑛=1 𝑤𝑛𝐼𝑛 sin(𝛿𝑛)
∑𝑁

𝑛=1 𝑤𝑛𝐼𝑛 cos(𝛿𝑛)

]

(8)

Eq. (8) is the formula of weighted phase-shifting algorithm. When
appropriate weights are selected, weighted phase-shifting algorithm
could be resistant to given error sources.

3. Sensitivity analysis for error sources

In this section, we analyze sensitivity of weighted phase-shifting
algorithm to phase-shift error, detector-response error, and light-source-
instability, which are main error sources in phase-shift interferometry.
And finally, we obtain the bound equations to minimize the influence
of these error sources.

3.1. Phase-shift error

In the case of a linear or nonlinear miscalibration, the actual nth
phase shift 𝛿′𝑛 may be expressed as a polynomial of ideal phase shift
𝛿𝑛 [14]. Note that in the first irradiance, phase shift is zero, so 𝛿′1 =
𝛿1 = 0. For equal-interval phase shift, 𝛿𝑛 = (𝑛 − 1) 𝛿, where 𝛿 is single
phase shift interval. When 𝑘 order phase-shift errors exist, 𝛿′𝑛 is a k order
polynomial of frames number n, as,

𝛿′𝑛 =
[(

1 + 𝜁1
)

(𝑛 − 1) + 𝜁2 (𝑛 − 1)2 +⋯ + 𝜁𝑘 (𝑛 − 1)𝑘
]

𝛿 (9)

where, 𝜁𝑘 is the coefficient of the kth order phase-shift error. The phase-
shift error defined as the difference between 𝛿′𝑛 and 𝛿𝑛 is,

𝛥𝛿𝑛 =
[

𝜁1 (𝑛 − 1) + 𝜁2 (𝑛 − 1)2 +⋯ + 𝜁𝑘 (𝑛 − 1)𝑘
]

𝛿 (10)

From the partial derivative of Eq. (8) with respect to 𝛿𝑛, we get
phase extraction error caused by phase-shift error (see Box I). Using
Eq. (7), the denominator and numerator of Eq. (11) can be simplified
respectively as,

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 =

[

𝐵 cos(𝜙)
𝑁
∑

𝑛=1
𝑤𝑛𝐼𝑛 cos2

(

𝛿𝑛
)

]2

+

[

−𝐵 sin(𝜙)
𝑁
∑

𝑛=1
𝑤𝑛𝐼𝑛 sin

2 (𝛿𝑛
)

]2

= 𝐵2𝑄2 (12)

and,

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝐵2𝑄

{
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2
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]
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[
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2

𝑁
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(

2𝛿𝑛
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(13)
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