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We describe a new method for computing tropical linear spaces 
and more general duals of polyhedral subdivisions. This is based 
on an algorithm of Ganter for finite closure systems.
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1. Introduction

Tropical linear spaces are among the most basic objects in tropical geometry (Maclagan and Sturm-
fels, 2015, Chapter 4). In combinatorial terms they form polyhedral complexes which are dual to 
regular matroid subdivisions of hypersimplices. Such subdivisions are characterized by the property 
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that each cell is the convex hull of characteristic vectors of the bases of a matroid. Here the hyper-
simplices correspond to the uniform matroids. Research on matroid subdivisions and related objects 
goes back to Dress and Wenzel (1992) and to Kapranov (1993). Speyer instigated a systematic study 
in the context of tropical geometry (Speyer, 2008), while suitable algorithms have been developed 
and implemented by Rincón (2013).

Here we present a new combinatorial algorithm for computing tropical linear spaces, which are not 
necessarily realizable. This implemented in the software system polymake (Gawrilow and Joswig, 
2000). Moreover, we report on computational experiments. Our approach has two key ingredients. 
First, our method is completely polyhedral — in contrast with Rincón’s algorithm (Rincón, 2013), 
which primarily rests on exploiting matroid data. Employing the polyhedral structure has the ad-
vantage that this procedure naturally lends itself to interesting generalizations and variations. In 
particular, this includes tropical linear spaces corresponding to non-trivially valuated matroids. Sec-
ond, our method fundamentally relies on an algorithm of Ganter (1987) for enumerating the closed 
sets in a finite closure system; cf. Ganter and Obiedkov (2016, §2.2). This procedure is a variant of 
breadth-first-search in the Hasse diagram of the poset of closed sets. As a consequence the compu-
tational costs grow only linearly with the number of edges in the Hasse diagram, i.e., the number 
of covering pairs among the closed sets. So this complexity is asymptotically optimal in the size of 
the output, and this is what makes our algorithm highly competitive in practice. The challenge is to 
implement the closure operator and to intertwine it with the search in such a way that it does not 
impair the output-sensitivity.

Kaibel and Pfetsch employed Ganter’s algorithm for enumerating face lattices of convex polytopes 
(Kaibel and Pfetsch, 2002), and this was later extended to bounded subcomplexes of unbounded poly-
hedra (Herrmann et al., 2013). Here this is generalized further to arbitrary regular subdivisions and 
their duals. Such a dual has been called tight span in Herrmann et al. (2012) as it generalizes the 
tights spans of finite metric spaces studied by Isbell (1964) and Dress (1984). The tight span of an ar-
bitrary polytopal complex may be seen as a special case of the dual block complex of a cell complex; 
e.g., see Munkres (1984, §64). From a topological point of view subdivisions of point configurations 
are cell decompositions of balls, which, in turn, are special cases of manifolds with boundary. The 
duality of manifolds with boundary is classically known as Lefschetz duality (e.g., see Munkres, 1984, 
§70), and this generalizes Poincaré duality as well as cone polarity. With an arbitrary polytopal sub-
division, �, we associate a new object, called the extended tight span of �, which contains the tight 
span, but which additionally takes duals of certain boundary cells into account. In general, the ex-
tended tight span is only a partially ordered set. If, however, � is regular, then the extended tight 
span can be equipped with a natural polyhedral structure. We give an explicit coordinatization. In 
this way tropical linear spaces arise as the extended tight spans of matroid subdivisions with respect 
to those boundary cells which correspond to loop-free matroids. While a tropical linear space can be 
given several polyhedral structures, the structure as an extended tight span is the coarsest. Algorith-
mically, this has the advantage of being the sparsest, i.e., being the one which takes the least amount 
of memory. In this sense, this is the canonical polyhedral structure of a tropical linear space.

This paper is organized as follows. We start out with recalling basic facts about general closure 
systems with a special focus on Ganter’s algorithm (Ganter, 1987). Next we introduce the extended 
tight spans, and this is subsequently specialized to tropical linear spaces. We compare the perfor-
mance of Rincón’s algorithm (Rincón, 2013) with our new method; see also Section 4.2 for further 
comments. To exhibit one application the paper closes with a case study on the f -vectors of tropical 
linear spaces.

2. Closure systems, lower sets and matroids

While we are mainly interested in applications to tropical geometry, it turns out that it is useful to 
start out with some fundamental combinatorics. This is the natural language for Ganter’s procedure, 
which we list as Algorithm 1 below.

Definition 2.1. A closure operator on a set S is a function cl : P(S) → P(S) on the power set of S , 
which fulfills the following axioms for all subsets A, B ⊆ S:
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