Accepted Manuscript

Sb₂Te₃-TiC-C nanocomposites for the high-performance anode in lithium-ion batteries

Hyeongi Kim, MinJung Kim, Young Hoon Yoon, Quoc Hai Nguyen, Il Tae Kim, Jaehyun Hur, Seung Geol Lee

PII: S0013-4686(18)32218-7

DOI: 10.1016/j.electacta.2018.10.002

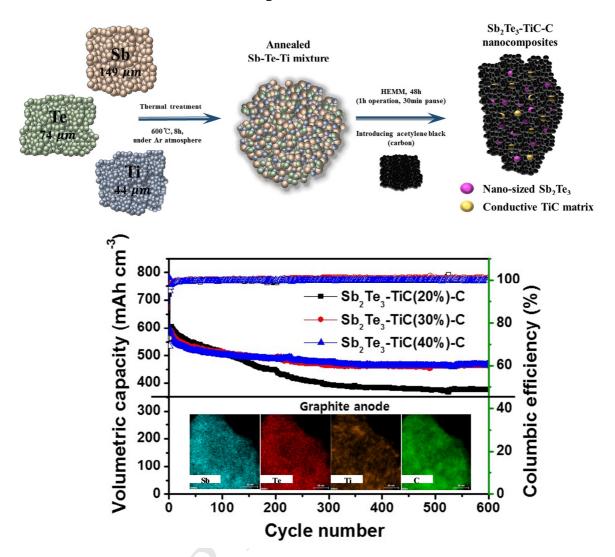
Reference: EA 32798

To appear in: Electrochimica Acta

Received Date: 7 August 2018

Revised Date: 27 September 2018

Accepted Date: 1 October 2018



Please cite this article as: H. Kim, M. Kim, Y.H. Yoon, Q.H. Nguyen, I.T. Kim, J. Hur, S.G. Lee, Sb₂Te₃-TiC-C nanocomposites for the high-performance anode in lithium-ion batteries, *Electrochimica Acta* (2018), doi: https://doi.org/10.1016/j.electacta.2018.10.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphical abstract

Nanocomposite of Sb_2Te_3 -TiC-C is synthesized via a simple and scalable high-energy mechanical milling process and heat treatment as a high-performance anode material for lithium-ion batteries. The appropriate amount of TiC formation into Sb_2Te_3 -C significantly improves the electrochemical performances.

Download English Version:

https://daneshyari.com/en/article/11008096

Download Persian Version:

https://daneshyari.com/article/11008096

<u>Daneshyari.com</u>