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A B S T R A C T

Global food security is negatively affected by drought. Climate projections show that drought frequency and
intensity may increase in different parts of the globe. These increases are particularly hazardous for developing
countries. Early season forecasts on drought occurrence and severity could help to better mitigate the negative
consequences of drought. The objective of this study was to assess if interannual variability in agricultural
productivity in Chile can be accurately predicted from freely-available, near real-time data sources. As the
response variable, we used the standard score of seasonal cumulative NDVI (zcNDVI), based on 2000–2017 data
from Moderate Resolution Imaging Spectroradiometer (MODIS), as a proxy for anomalies of seasonal primary
productivity. The predictions were performed with forecast lead times from one- to six-month before the end of
the growing season, which varied between census units in Chile. Predictor variables included the zcNDVI ob-
tained by cumulating NDVI from season start up to prediction time; standardised precipitation indices derived
from satellite rainfall estimates, for time-scales of 1, 3, 6, 12 and 24months; the Pacific Decadal Oscillation and
the Multivariate ENSO oscillation indices; the length of the growing season, and latitude and longitude. For each
of the 758 census units considered, the time series of the response and the predictor variables were averaged for
agricultural areas resulting in a 17-season time series per unit for each variable. We used two prediction ap-
proaches: (i) optimal linear regression (OLR) whereby for each census unit the single predictor was selected that
best explained the interannual zcNDVI variability, and (ii) a multi-layer feedforward neural network archi-
tecture, often called deep learning (DL), where all predictors for all units were combined in a single spatio-
temporal model. Both approaches were evaluated with a leave-one-year-out cross-validation procedure. Both
methods showed good prediction accuracies for small lead times and similar values for all lead times. The mean
Rcv

2 values for OLR were 0.95, 0.83, 0.68, 0.56, 0.46 and 0.37, against 0.96, 0.84, 0.65, 0.54, 0.46 and 0.38 for
DL, for one, two, three, four, five, and six months lead time, respectively. Given the wide range of climates and
vegetation types covered within the study area, we expect that the presented models can contribute to an im-
proved early warning system for agricultural drought in different geographical settings around the globe.

1. Introduction

Droughts cause major agricultural production losses worldwide
(Campbell et al., 2016). Although there is debate whether drought
frequency has increased in recent years (Dai, 2012; Sheffield et al.,
2012), climate change is expected to exacerbate the phenomenon and
lead to more frequent and intense drought periods, which may even
occur in regions where overall precipitation increases are expected
(IPCC, 2013; McVicar et al., 2012; Trenberth et al., 2014; Wild, 2009).
Although increased levels of carbon dioxide in the atmosphere may

increase the water use efficiency of crops (Donohue et al., 2013; Lu
et al., 2016; Zhu et al., 2016), the combined effects of global mean
temperature (Zhao et al., 2017) and drought occurrence (Dai, 2012) are
expected to cause an overall reduction of global crop yields (Ray et al.,
2015; Zhao et al., 2017) and may have a negative impact on cropping
frequency and sown area (Cohn et al., 2016). Planning for effective
adaptation strategies is thus crucial to mitigate future impacts (Roco
et al., 2014). In addition, the ability to anticipate the impact of drought
early in the season and take in-season mitigation measures such as more
targeted irrigation (e.g., by applying a regulated deficit irrigation), or
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reducing stand density (Bodner et al., 2015) could help to reduce crop
losses (Pulwarty and Sivakumar, 2014; Wilhite et al., 2000, 2014).

Satellite image time series have been widely used for monitoring
agricultural drought (AghaKouchak et al., 2015). Commonly-derived
variables from such time series include vegetation indices and rainfall
estimates, which can be translated into anomalies by comparing the
values in the current year against historic distributions (Ashouri et al.,
2015; Funk et al., 2015; Huffman et al., 2007). The most commonly-
used vegetation index for this purpose is the NDVI (Normalised Dif-
ference Vegetation Index; Rouse et al., 1974) from which multiple
anomaly measures have been derived (Jiao et al., 2016; Kogan, 1990;
Peters et al., 2002; Sandholt et al., 2002) and applied for monitoring
agricultural drought (Cunha et al., 2015; McVicar and Jupp, 1998;
Rojas et al., 2011; Zambrano et al., 2016; Zhang and Jia, 2013). Besides
NDVI, other vegetation indices have been developed with the aim to
further increase the sensitivity to vegetation activity, including the
enhanced vegetation index (EVI; Huete et al., 2002) and the Vegetation
Index based on the Universal Pattern Decomposition (VIUPD; Zhang
et al., 2007). An often-used approach to translate rainfall information
into a meteorological drought measure is through the calculation of the
Standardised Precipitation Index (SPI; McKee et al., 1993), an anomaly
measure that is closely related to soil moisture availability when com-
puted for short time scales (i.e. < 9months) (Quiring and Ganesh,
2010). While the SPI can be calculated from weather station data, in
countries with a low station density and short historical records, sa-
tellite-derived rainfall estimates (RFE) can be a good alternative source
for SPI calculation (Tapiador et al., 2012; Zambrano et al., 2017). Other
satellite-derived products that have relevance for drought monitoring
include estimates of soil moisture and evapotranspiration (Hao and
AghaKouchak, 2013; Mu et al., 2013; Sheffield et al., 2004; Tsakiris
et al., 2007). Drought indices are also constructed by combining mul-
tiple parameters. For example, the SPEI (Standardised Precipitation
Evapotranspiration Index) considers both precipitation and evapo-
transpiration to account for the effects of temperature variability on
drought assessment (Vicente-Serrano et al., 2010) and has been used in
various studies for monitoring agricultural drought (Moorhead et al.,
2015; Potopová et al., 2015; Vicente-Serrano et al., 2012). Climate-
based drought indicators and satellite-derived vegetation metrics with
other biophysical information are used by the United States National
Drought Mitigation Center to calculate the Vegetation Drought Re-
sponse Index (VegDRI, J.F. Brown et al., 2008; Brown et al., 2008) by
analysing historical input data with a regression tree approach that
produces a map of drought conditions. While we can accurately assess
and monitor agricultural drought as it occurs with a variety of indices,
early prediction is more complex.

The prediction of vegetation conditions is challenging for three
reasons: 1) the underlying uncertainties in weather and climate pre-
diction (Morss et al., 2008); 2) changes in precipitation patterns (Dore,
2005), such that precipitation amount and distribution may sub-
stantially deviate from normal regional patterns; and 3) the effect of
both of these on crop production which in turn depends on land man-
agement decisions and the sensitivity of different crop stages to the
intensity and duration of water shortage or excess (Knapp et al., 2008;
Sykes, 2001), amongst other factors. Despite this challenge, various
efforts have been made to predict vegetation conditions. Table 1 pro-
vides a non-exhaustive overview of relevant studies that aim to predict
agricultural productivity, or a related proxy, from remote sensing-de-
rived predictors.

Several studies have used a single predictor to explain the inter-
annual variability in seasonal vegetation productivity. In those cases,
early prediction was achieved by using lagged relationships whereby
the predictor was available before the end of the season (Meroni et al.,
2014; Vrieling et al., 2016). Alternatively, rainfall has been used as a
predictor of seasonal vegetation productivity. For example, Meroni
et al. (2017) found for the Sahel that on average about 40% of the
variability in seasonal vegetation productivity could be explained by

selecting the optimal time-scale and timing of SPI per grid cell. In ad-
dition, climatic oscillation indices, such as the Pacific Decadal Oscilla-
tion (PDO) and the Multivariate ENSO Index (MEI), have been shown to
affect weather across the globe and can explain variability in agri-
cultural productivity (Boisier et al., 2016; Garreaud and Battisti, 1999;
Hansen et al., 1998; Marj and Meijerink, 2011; Montecinos and
Aceituno, 2003; Reilly et al., 2003).

Brown et al. (2010) demonstrated that the timing of the growing
season cumulative NDVI depends significantly on the PDO and the MEI
across multiple locations in Africa. Van Leeuwen et al. (2013) showed
that the MEI and Antarctic Oscillation (AAO) index could explain part
of the interannual variability in annual NDVI-based productivity and
phenology for South America. While these studies assessed the ex-
planatory power of climatic oscillation indices on vegetation varia-
bility, they did not specifically address the prediction of vegetation
productivity shortfalls before they occur. Although studies focusing on
single parameters offer interesting directions for the prediction of ve-
getation productivity, combining multiple predictors could increase the
prediction skills.

The use of multiple predictors to estimate vegetation response has
been evaluated by applying different techniques such as multiple linear
regression models and regression trees. Commonly-used predictors in-
clude lagged NDVI, precipitation-derived indices such as SPI, soil
moisture, and oscillation indices (Table 1). Optimal prediction skills of
NDVI variability range approximately between 90% (one month before)
and 50% (three months before), as achieved for example by Tadesse
et al. (2014). More recently, machine learning methods have been used
for predicting daily and monthly rainfall (Abbot and Marohasy, 2012,
2014; Deo and Şahin, 2015; Nastos et al., 2014), mostly because they
can accommodate a large number of input variables and can auto-
matically combine these into complex functions that describe multiple,
non-linear relationships between the independent and explanatory
variables (LeCun et al., 2015). Given the mentioned advantages of
machine-learning methods and the lack of current drought prediction
tools, there is scope to evaluate if machine learning methods could
provide more accurate early prediction of drought than linear regres-
sion models.

The main goal of this study is to assess if interannual variability in
crop biomass productivity can be accurately predicted using freely-
available, near real-time data sources. The sources included NDVI time
series, anomalies of cumulative rainfall at different monthly time-steps
obtained from satellite-derived RFEs, and climatic oscillation indices.
To achieve our goal we tackle the following objectives: (i) derivation of
a proxy for seasonal crop biomass productivity for the growing season;
(ii) development of two prediction models for that proxy, one based on
optimal linear regression model (OLR) per spatial unit, and the other
combining information from all units in a feed-forward multi-layer
neural network, known as deep learning (DL); and (iii) evaluation of the
OLR and DL model predictions for the period 2000–2017. The Methods,
Results and Discussion sections are structured according to these three
objectives.

2. Study area

We selected Chile as a case study area for this analysis, because it
contains a large diversity in climate and crops, and frequently suffers
from drought-induced crop losses (Zambrano et al., 2016). Future crop
losses can be expected because a decrease in precipitation is predicted
for the Central and South part by the global climate models (IPCC,
2013) where about 84% of the agricultural activities are concentrated
(INE, 2007). As a result, wheat and maize yields for Chile are expected
to decrease by about 15% to 20% by 2050 (IPCC, 2014; Meza and Silva,
2009) based on crop growth simulation models with future climate
scenario data. During the past decade, an unusual long period of dry
conditions persisted over Central Chile and has been termed a mega
drought (Garreaud et al., 2017). The focus of this study is the main
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