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A B S T R A C T

Cloud detection and screening constitute critically important first steps required to derive many satellite data
products. Traditional threshold-based cloud mask algorithms require a complicated design process and fine
tuning for each sensor, and they have difficulties over areas partially covered with snow/ice. Exploiting ad-
vances in machine learning techniques and radiative transfer modeling of coupled environmental systems, we
have developed a new, threshold-free cloud mask algorithm based on a neural network classifier driven by
extensive radiative transfer simulations. Statistical validation results obtained by using collocated CALIOP and
MODIS data show that its performance is consistent over different ecosystems and significantly better than the
MODIS Cloud Mask (MOD35 C6) during the winter seasons over snow-covered areas in the mid-latitudes.
Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility
to be configured for different sensors. Compared to threshold-based methods and previous machine-learning
approaches, this new cloud mask (i) does not rely on thresholds, (ii) needs fewer satellite channels, (iii) has
superior performance during winter seasons in mid-latitude areas, and (iv) can easily be applied to different
sensors.

1. Introduction

1.1. Background

A reliable cloud mask is essential for satellite remote sensing of
land, ocean, or cryospheric properties. Due to the significant impact of
clouds on shortwave and longwave radiation, mis-identification of
cloudy pixels as surface or vice versa can significantly affect the quality
of any satellite remote sensing product. Traditionally, threshold-based
tests have been employed in many cloud mask algorithms. Such algo-
rithms include the Automated Cloud Cover Assessment (ACCA) algo-
rithm (Irish et al., 2006) applied to the Landsat ETM+ sensor, the cloud
tests applied in the MOD35 algorithm (Ackerman et al., 2010) for the
moderate-resolution imaging spectroradiometer (MODIS) sensor and
the Clouds from AVHRR (CLAVR) (Stowe et al., 1999) as well as its
extension CLAVR-x algorithm. These algorithms typically use a com-
bination of threshold tests, which employ a number of satellite channels

located in the visible (VIS), near infrared (NIR), shortwave infrared
(SWIR), and thermal infrared (TIR) wavelength ranges (e.g. MOD35
uses 19 bands — 10 reflectance bands and 9 thermal infrared bands) to
detect clouds and snow/ice. The thresholds used in these tests are
generally from 1) model simulations, 2) statistics of cloud/clear-sky
scenes, and 3) expert experience. New algorithms, such as fmask (Zhu
and Woodcock, 2012; Zhu et al., 2015), employ dynamic thresholds
derived from object-based cloud and cloud shadow statistics. In our
previous work (Chen et al., 2014), a model based dynamic threshold
method was developed, tested, and shown to have superior perfor-
mance compared to the MODIS MOD35 algorithm over the snow-cov-
ered Greenland Plateau.

Because of the similarity of cloud and snow/ice optical properties in
VIS and near NIR channels, snow detection has always been essential in
cloud mask algorithm designs. Indices for mapping snow cover using
VIS and SWIR data were developed in the mid-1970s. The Normalized
Difference Snow Index (NDSI) was introduced by Hall et al. (1995) to
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map snow using MODIS data. Prior to that, Dozier (1987, 1989) used a
VIS/SWIR index algorithm to map snow based on Landsat data. Most
threshold-based cloud mask algorithms will use NDSI in their proces-
sing chain (Ackerman et al., 1998,2010; Irish et al., 2006; Zhu and
Woodcock, 2012) for cloud screening, which highlights the importance
of snow detection since its accuracy will also affect that of cloud de-
tection.

Enhanced computational power and improvements in machine
learning techniques have allowed machine learning algorithms, such as
decision trees, logistic regressions, support vector machines, and arti-
ficial neural networks, to be used for cloud masking and snow/ice de-
tection. Taravat et al. (2015) used a multi-layer perceptron neural
network model to detect clouds in Landsat images. Hollstein et al.
(2016) compared several methods, including decision tree, classical
Bayesian, random forest, support vector machine, and stochastic gra-
dient descent, applied to Sentinel-2 MultiSpectral Instrument (MSI)
images. Hughes and Hayes (2014) used a neural network based method
trained with a subset of the United States Geological Survey Landsat
Data Continuity Mission (USGS LDCM) Cloud Cover Assessment Data
(Scaramuzza et al., 2012) and a comparison with fmask (Zhu and
Woodcock, 2012) showed favorable results.

Bayesian methods have shown significant improvements over
threshold based methods. Notably, model based Bayesian statistical
methods have shown that simulated datasets can be used as a predictor
to improve the cloud detection accuracy. Merchant et al. (2005) first
applied this method for cloud screening over ocean areas in order to
retrieve sea surface temperature. Bulgin et al. (2014), and Bulgin et al.
(2018) extended this method to be applied over land areas. In these
studies, manually classified datasets were used for validation. An au-
tomatic Bayesian classifier, derived using collocated AVHRR and CA-
LIOP data by Heidinger et al. (2012), showed improvements over
threshold-based methods and the ability to derive uncertainties in the
cloud masking process. The dependence on CALIOP data to derive
posterior cloud probability was also introduced in this paper.

Recently, a support vector machine (SVM) approach has been used
in the latest CLAUDIA3 algorithm (Ishida et al., 2018). High quality
training datasets are essential to machine-learning-based methods and
manually-generated datasets such as the ACCA reference dataset (Irish
et al., 2006) and the Sentinel-2 MSI dataset constructed by Hollstein
et al. (2016) are often used by current machine-learning-based cloud
detection schemes. In Ishida et al. (2018), the training dataset for the
SVM classification is also selected subjectively from actual satellite
measurements by carefully examining the typical surface type and
eliminating irregular data.

1.2. Limitations of traditional methods

Traditional threshold-based cloud mask methods still face serious
challenges over snow- and ice-covered areas, especially in Arctic and
sub-Arctic regions where there are frequent temperature inversions
(affecting TIR-based tests) and over mid-latitude regions where the
reflected signal is often from pixels with mixed snow and vegetation/
soil cover. In order to handle such complicated surface conditions, the
threshold-based logic becomes increasingly complex (as can be seen in
plates 1–5 of Irish et al., 2006) and a large number of satellite channels
is often required. Sometimes these tests will produce conflicting results
and additional “clear restoral tests” are needed (Ackerman et al., 2010)
to avoid mis-classification. The need to detect possible snow-covered
areas also adds uncertainty to the results. As reported by Wang et al.
(2008), mis-classifications of snow-covered areas as “cloud” or vice
versa are still a serious problem in results produced by traditional
threshold-based methods such as the MODIS cloud mask as will be
shown in Section 3.

Machine learning methods, on the other hand, generally have no
dependence on thresholds and do not rely on detecting snow before
cloud screening. However, the dependence on manually-generated

datasets has limited the development and operational use of machine
learning based algorithms. It is difficult to generate a reliable training
dataset due to the large amount of human resources needed to classify
hundreds of images with millions of pixels. The limited amount of
manually-classified images also makes it hard to cover all possible
solar/viewing geometries, which limits the operational use of trained
algorithms. Most importantly, manually-classified images are usually
available only post-launch. This circumstance impedes pre-launch
evaluation of algorithm performance and makes its application to a
different sensor difficult.

2. New approach

In this paper, we present a new machine-learning based approach to
cloud and snow detection and discrimination to overcome the limits of
previous methods. Instead of using manually-generated datasets, we
simulate the training dataset needed by machine learning algorithms.
Compared to manually-generated training data based on actual mea-
surements, simulated training data have the following advantages:

• There is no need for humans to identify hundreds of images with
millions of pixels, which greatly saves human effort.

• The number of training samples can be as large as desired/needed,
which can help avoid overfitting problems and be used to fully ex-
plore the potential of machine learning techniques.

• The training dataset can cover the full range of possible solar/
viewing geometries.

• The algorithm can easily be modified for application to different
sensors; only new training datasets are needed.

In order to create such a training dataset, it is necessary to take into
account the interaction of incident solar radiation with different types
of surfaces, aerosols and clouds. This requirement implies that it is
crucially important to have access to a comprehensive radiative transfer
model. In order to simulate the reflectance from complex land surfaces,
we constructed such a model; the details are provided in the following
section.

2.1. Radiative transfer simulations

In order to simulate the light signal received by a satellite instru-
ment, we need to solve the radiative transfer equation (RTE) pertinent
for light propagation in the coupled atmosphere-surface system. The
diffuse radiance I(τ,θ,ϕ) at wavelength λ is found by solving the fol-
lowing RTE:
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Here, F0 is the incident top-of-the-atmosphere (TOA) solar irradiance
(normal to the beam), while the differential optical depth
dτ=−(α+ β)dz, the single scattering albedo ϖ= β/(α+ β)= β/γ,
and the scattering phase function p(τ,θ′,ϕ′;θ,ϕ) are the inherent optical
properties (IOPs) of the scattering/absorbing medium. Note that we
have used the Greek letters α, β, and γ= α+ β to denote the absorp-
tion, scattering, and extinction coefficients, respectively. θ0 and ϕ0 re-
present solar zenith and azimuth angles, μ0= cosθ0; θ′ and ϕ′ are
sensor zenith and azimuth angles prior to a scattering event, and θ and
ϕ the corresponding angles after the scattering event, μ=cosθ. In our
training dataset, the TOA bidirectional reflectance factor (hereafter
simply referred to as the reflectance), defined as R(τ,θ,ϕ)= πI(τ,θ,ϕ)/F0
cosθ0, is simulated using the latest version of the DISORT radiative
transfer model (RTM) (DISORT 4.0, Lin et al., 2015; Stamnes et al.,
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